
Sponsored by:

+

Presented by:

Contents
Executive summary 3

Key findings 6

Who took the survey 8

The five stages of DevOps evolution: An introduction 16

CAMS and the DevOps evolutionary model 21

Stage 0: Build the foundation 33

Stage 1: Normalize the technology stack 44

Stage 2: Standardize and reduce variability 49

Stage 3: Expand DevOps practices 55

Stage 4: Automate infrastructure delivery 63

Stage 5: Provide self-service capabilities 69

Conclusion 77

Methodology 78

Author biographies 79

Executive summary
Over the past seven years, we’ve surveyed
more than 30,000 technical professionals
around the world to explore the relationships
between IT performance, DevOps practices,
culture, organizational performance
and other elements that affect business
outcomes. In the process, we’ve built the
deepest and most widely referenced body of
DevOps research available.

The 2018 State of DevOps Report breaks new
ground in our understanding of the DevOps
evolutionary journey. We have identified the
five distinct stages of DevOps evolution, and
the critical practices at each stage that help
you achieve success and progress to the
next phase of your journey.

33 Executive summary

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

In 2012, our research on IT performance broke new ground and
paved the way for a fresh conversation between IT operations,
development teams and the business. We were able to show that
the traditional view of IT as a cost center is inaccurate: IT is a
powerful driver of value in a world where speed, agility, security and
stability are business imperatives.

Our subsequent reports, created in partnership with the team
at DevOps Research and Assessment (DORA1) have shown
how much progress the industry has made over the years, and
how much work still lies ahead. The idea that you can increase
throughput while simultaneously improving the resilience of the
system — an important goal of many DevOps initiatives — is no
longer new. Yet for all the words written about DevOps, no one
has provided a pragmatic prescriptive approach to DevOps —
until now.

The 2018 State of DevOps Report once again breaks new ground
in our understanding of DevOps. This year we have quantified
the DevOps journey, identifying stages of evolution and the
prescriptive steps that will help you progress on this journey.
Whether you manage systems, write code, manage teams or
departments, the guidance our research provides will help you
achieve success faster.

1 DORA was founded by Dr. Nicole Forsgren, Jez Humble and Gene Kim

Puppet | State of DevOps Report 2018

 Executive summary 4

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

We began with the hypothesis that every DevOps journey
has distinct stages and that specific practices can accelerate
successful DevOps adoption. Our second hypothesis was that the
most successful DevOps journeys start as a ripple in the pond,
then radiate out across the business. Individual teams see early
success; that success spreads to multiple teams, then through a
department, and finally out to multiple departments.

Why this report now? Because our industry needs it. While we’ve
all made a lot of progress and many organizations have achieved
early success, most still haven’t been able to broadly replicate
and scale that success. We’ve seen far too many teams whose
DevOps journeys began eight or nine years ago, and who have
experienced many starts and stops along the way. These teams
tell us they feel they’re still at the beginning of their journey, and
wonder why they haven’t made more progress.

It doesn't have to be this way. DevOps practices and tools
are now at a more mature stage, and enough teams have shown
DevOps success to prove it’s not a fluke. There are in fact known
stages of DevOps and specific practices that lead to success.

If you’re just starting out, this report can help you achieve success
faster. And if you’re in the middle of your journey and feeling stuck,
our findings can help you get back on track and scale your success.

55Back to Contents Executive summary

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

Key findings
In a DevOps evolution, there are many paths
to success, but even more that lead to failure.
Every organization is different and for most, the DevOps
journey isn’t linear. There are many starts and stops along
the way, which can kill early momentum and lead to cynicism.
Without a prescriptive path forward, it’s not surprising that
organizations are struggling to scale their DevOps success
beyond isolated teams.

The question is, how do you foster DevOps so you can scale
success across the business? If you’re stuck, how do you get
back on track and continue building momentum? DevOps is
an ongoing evolution, and there is no final destination. But
there are ways to achieve success faster. We’ve identified the
five stages in a DevOps evolution and the key practices that
will help you advance to the next stage in your journey.

Executives have a rosier view of their
DevOps progress than the teams they manage.
For nearly every DevOps practice, C-suite respondents were
more likely to report that these practices were in frequent use.
Because the C-suite relies on upwards communication — often
filtered and sanitized by the time it reaches them — executives
don’t see the bottlenecks and broken processes that are stalling
progress. So they have an incomplete understanding of DevOps
progress and impact.

For example, 64 percent of C-suite respondents believe security
teams are involved in technology design and deployment versus
39 percent at the team level. The best way to get everyone on the
same page is through the mutually reinforcing DevOps pillars of
automation and measurement. Automated systems enable better
reporting of metrics that can be shared across the business.

Puppet | State of DevOps Report 2018

 Key findings 6

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Start with the practices that are closest to
production; then address processes that happen
earlier in the software delivery cycle.
We are often asked “Where do we start?” We recommend starting
where the pain is most acute and visible, which is typically
application deployments — the boundary between Dev and Ops.
Let’s face it: You’re not going to magically fix your organization’s
culture overnight. But you can start by improving collaboration
(and results) across this one critical functional boundary.

Cross-team sharing is key to scaling DevOps success.
We discovered that the foundational practices — the practices
with the most significant impact across the entire DevOps
evolutionary journey — are dependent on sharing, one of the
key pillars of DevOps. Organizations that have small pockets
of DevOps success, yet never manage to spread that success
further, are stalled and can't progress to higher levels of
automation and self-service. So the business impact of their
DevOps success may not be felt where it matters.

To ensure you can scale your early success, prioritize the
building blocks that can be reused and consumed across teams,
such as deployment patterns. Promoting reuse of successful
patterns, enabling teams to contribute improvements to other
teams’ tooling, and sharing both successes and failures are all
critical to expanding the other three pillars of DevOps: culture,
automation and measurement.

Automating security policy configurations
is mission-critical to reaching the highest
levels of DevOps evolution.

Highly-evolved organizations are 24 times more likely to always
automate security policy configurations compared to the least
evolved organizations. As organizations evolve, security policy
becomes part of operations, not just an afterthought when
an audit looms. This requires first breaking down boundaries
between ops and security teams (which are further from
production). As we see with all the fundamental practices
of DevOps, this practice evolves from resolving immediate
pain to a more strategic focus — in this case, from “keep the
auditors off my back” to “keep the business and our customers’
data secure.” In other words, teams automate security policy
configurations initially for their own benefit, and as their
understanding evolves, the automation evolves to benefit the
entire organization.

Puppet | State of DevOps Report 2018

 Key findings 7

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Who took the survey
A key difference in this year’s report is better
global representation. Based on anecdotal
evidence, we believe that different geographic
regions demonstrate different levels of
DevOps maturity, so we specifically targeted
respondents outside of North America to
ensure greater representation of organizations
beyond the United States. This year, we offered
the survey in four languages besides English:
French, German, Japanese and Malay. These
languages cover regions where we are seeing
high interest in DevOps.

88 Who took the survey

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

39%

29%

18%
1%3%

5%

5%

U.S.

Europe

Asia

Africa and
Middle East

Australia and
New Zealand

Mexico
Central America

and South America

Canada

Responses by global region

9

Puppet | State of DevOps Report 2018

http://puppet.com

Asia by country

Other2%

Taiwan1%

China3%

India18%

Singapore37%

Japan37%

This year, 18 percent of survey respondents were from Asia.
To increase representation from Asia, we offered the survey in Japanese and Malay.

10

Puppet | State of DevOps Report 2018

http://puppet.com

Europe by country

Ukraine1%

Poland2%

Netherlands6%

France23%

Germany23%

UK29%

Belgium1%

Other15%

This year, 29 percent of survey respondents were from Europe.
To increase representation from Europe, we offered the survey in French and German.

11

Puppet | State of DevOps Report 2018

http://puppet.com

Gender identity Minority status: visible/invisible

Minority identity79%
Male

Female
17%

Prefer to not say
3%Other

1%

61%
No

Yes
28%Prefer to

not say

11%
Do you identify as
part of a visible or
invisible minority in
your organization?

Prefer to not say

Other

Disability

Sexual orientation

Gender identity

First language

Ethnicity

17%

6%

7%

16%

21%

24%

40%

This year 17 percent of respondents were female, up from just 6 percent last year. We asked respondents if they considered themselves a member of
a visible or invisible minority. Twenty-eight percent responded “yes.”
Of those who responded yes, 40 percent identified as a member of
an ethnic minority.

12

Puppet | State of DevOps Report 2018

http://puppet.com

Principal industry

2%1%

3%

12%

38%

8%

6%

7%

5%

6%

6%

5% Technology

Financial Services

Industrials/Manufacturing

Retail/Consumer/eCommerce

Education

Life Sciences/Healthcare/Pharma

Government

Media, Telecommunications

Media, Entertainment

Energy and Resources

Non-Profit

Other

Organization annual revenue

$50M to less than $100M

Less than $50M

$100M to less than $250M

$250M to less than $500M

$500M to less than $1B

$1B to less than $2B

$2B or more

10%

13%

15%

9%

7%

17%

29%

13

Puppet | State of DevOps Report 2018

http://puppet.com

Role within organization

Team leader
or supervisor21%

Individual
contributor26%

Management
Senior manager, manager25%

Senior management
SVP, vice president, director14%

C-suite executive9%

Other5%

Department and team

Other15%
Release engineering2%
Quality engineering2%
Quality assurance2%
Site reliability engineering3%
Application development12%
DevOps15%
Release engineering1%
Database2%
Site reliability engineering2%
Network operations2%
IT general7%
DevOps14%
IT operations21%

IT

TeamDepartment

Information
security
Other

55%

36%
Development
or engineering

3%
5%

Nearly half (47 percent) of survey respondents are individual
contributors or team leaders and 39 percent are in management.
Nine percent of respondents said they are in the C-suite.

Over half (55 percent) of respondents reported working in an IT department, with
21 percent in an IT operations team and 14 percent in a DevOps team. Another
36 percent of respondents reported working in an engineering or development team,
with 15 percent in a DevOps team and 12 percent in an application development
team. We've seen a steady increase in survey responses from people on DevOps
teams, from just 16 percent in 2014 to 29 percent this year. It's interesting to note
that DevOps teams reside equally in both IT and engineering departments.

14

Puppet | State of DevOps Report 2018

http://puppet.com

Organizational structures used in DevOps journey

We wanted to understand which organizational structures respondents were
currently using or considering for future use. “Cross-functional teams for
specific services or applications” and centralized IT teams are the two most
widely used structures, followed closely by “dedicated DevOps team.”

The lowest-reported organizational structure for current use was “site reliability
engineering (Team)” but this structure had the highest percentage of responses
for future use. Interestingly, the C-suite was far less likely than managers or team
members to consider using any of the structures in the future.

Cross-functional teams responsible
for specific services or applications

Dedicated DevOps team

Centralized IT team with multiple
application development teams

Site reliability engineering team

Service team providing DevOps capabilities
(e.g. building test environments, monitoring

We haven’t and would
never use this structure

We previously
used this structure

We currently
use this structure

We haven’t yet used this structure
but we may use it in the future

20% 14% 29% 37%

10% 20% 58% 12%

13% 15% 51% 21%

8% 16% 19% 18%

15%

10%

28%

18%

39%

41%

24%

68%

45%

36%

46%

23%

81%

48%

57%

25% 16% 36% 23%

C-Suite TeamManagement

15

Puppet | State of DevOps Report 2018

http://puppet.com

The five stages of DevOps
evolution: An introduction
One of the main goals of this year’s State of DevOps Report
was to understand the DevOps journey and how organizations
evolve their practices over time.

We asked respondents several questions about the frequency
of DevOps practices in their organizations. Using this data, we
did statistical analysis to determine the practices that define the
stages of a DevOps evolution. Each stage is defined by two key
practices, what we call “defining practices.” We further analyzed
each stage to determine which practices most contribute to
success in that stage — we call them “contributors to success.”

We ran additional analysis to see which practices have the
greatest impact throughout the DevOps evolutionary journey.
These are the “foundational practices” that highly evolved
organizations adopt early on and continue to evolve as they
progress through their journeys. For the full methodology, see
the Methodology section at the end of this paper.

Puppet | State of DevOps Report 2018

 The five stages of DevOps evolution: An introduction 16

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 0: Build the foundation
When development and operations teams (and frequently other
stakeholders, such as testing or security) are just starting to
grasp the importance of collaboration and sharing, they rapidly
implement technologies and processes to facilitate sharing of
ideas, metrics, knowledge, processes, and technologies.

This early phase is not a “one and done” stage in a linear DevOps
progression. The processes and approaches we identify as
foundational are maintained and actually enhanced throughout
an organization’s DevOps evolution. So this foundational stage is
critical to the DevOps evolution, and the health of a successful
DevOps organization rests on the base that gets built during this
initial stage.

Stage 1: Normalize the technology stack
At this stage, you may see the dev teams making a coordinated
move to more agile development methods (e.g., an enterprise-
wide Agile mandate), or a few teams organically adopting new
methods for specific products or workflows.

Development teams at this stage have adopted version control,
which is the first step on the path to continuous integration and
continuous delivery. They're also beginning to normalize their tech
stacks by eliminating redundant systems, perhaps refactoring
applications to work on a smaller set of operating systems.

Normalize the
technology stack

Standardize and
reduce variability

Expand
DevOps
practices

Automate
infrastructure
delivery

Provide self-service
capabilities

01

02

03 04

05

Puppet | State of DevOps Report 2018

 The five stages of DevOps evolution: An introduction 17

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 2: Standardize and reduce variability
This stage is where both dev and ops teams concentrate on
reducing variance, continuing to standardize the tech stack
by further reducing the number of operating systems to
a single OS or OS family and building on a standard set of
technologies: databases, key value stores, message queues,
identity stores and more.

We typically see this consolidation happening independently
within each team, without much cross-team collaboration. We
also see this as an opportunity for early collaboration across
teams. For example, if dev teams want to standardize on one
database or identity store, they should consult with their ops
colleagues, who likely have experience managing all of them
and can share operational considerations.

This standardization phase reduces the overall complexity of
the system, enabling teams to scale their expertise and apply
consistent management and deployment patterns across
multiple applications. The benefits are great: You can deploy
new applications and services faster, and reduce errors that
arise from inconsistency. Best of all, as the shared patterns
evolve and improve, the quality of all services improve.

Stage 3: Expand DevOps practices
Now that the important foundational elements are in place,
and the system is well understood, organizations can begin to
address other pain points. Typically, deployments are a huge
source of pain and garner a lot of attention from management
when releases are delivered late, or a critical defect makes it to
production — and customers notice.

Changes implemented in previous stages have caused
application development teams’ throughput to outpace the
delivery team’s ability to deploy. This discrepancy must be
addressed quickly, or all the hard work at earlier stages will
look like the effort made business outcomes worse, not better.

To resolve this issue, successful teams at this stage reuse
deployment patterns for building applications and services, and
infrastructure changes are tested before deploying to production.
Both these practices provide predictability and reliability, building
trust in the new methods and practices. With this new level of
trust in the system, important cultural shifts can take place in
the organization. For example, individual team members can
gain the ability and organizational permission to do work without
manual approval from outside the team, eliminating bureaucratic
overhead and promoting more efficient workflows.

Puppet | State of DevOps Report 2018

 The five stages of DevOps evolution: An introduction 18

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 4: Automate infrastructure delivery
This stage in the DevOps journey is defined by the automation
of systems configuration and provisioning, which many people
consider to be a high-priority outcome of a DevOps initiative.
Automating infrastructure delivery resolves the issue of developer
throughput outpacing operations, and therefore the ability to
deploy. Automated system configuration makes it possible for ops
teams to deliver systems to developers and QA that match the
eventual production environment — and deliver them faster.

Infrastructure automation certainly addresses a local pain point
for IT operations teams, but it goes much further than that:
It catalyzes the creation of self-service more broadly
throughout the organization in subsequent stages. Self-service
for multiple departments ultimately leads to greater efficiency
and satisfaction throughout the organization.

Stage 5: Provide self-service capabilities
By the time an organization gets to Stage 5, you can see the
cumulative effects of achieving high levels of automation and
trust. At this stage, resources are available via self-service, and
incident response is automated. IT teams don’t automate just for
the sake of automating; they do it to make the entire organization
run with greater efficiency and precision. With the self-service
capabilities developed in Stage 4, teams across the business can
work at their own pace, freed from the bureaucratic overhead of
manual approvals, handoffs, tickets and long wait times. As you
can see, departments far beyond IT and development are now
able to work more efficiently, benefiting the entire organization.

Puppet | State of DevOps Report 2018

 The five stages of DevOps evolution: An introduction 19

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Defining practices* and associated practices Practices that contribute to success

Stage 0

• Monitoring and alerting are configurable by the team operating the service.
• Deployment patterns for building applications or services are reused.
• Testing patterns for building applications or services are reused.
• Teams contribute improvements to tooling provided by other teams.
• Configurations are managed by a configuration management tool.

Stage 1 • Application development teams use version control.
• Teams deploy on a standard set of operating systems.

• Build on a standard set of technology.
• Put application configurations in version control.
• Test infrastructure changes before deploying to production.
• Source code is available to other teams.

Stage 2 • Build on a standard set of technology.
• Teams deploy on a single standard operating system.

• Deployment patterns for building applications and services are reused.
• Rearchitect applications based on business needs.
• Put system configurations in version control.

Stage 3
• Individuals can do work without manual approval from outside the team.
• Deployment patterns for building applications and services are reused.
• Infrastructure changes are tested before deploying to production.

• Individuals can make changes without significant wait times.
• Service changes can be made during business hours.
• Post-incident reviews occur and results are shared.
• Teams build on a standard set of technologies.
• Teams use continuous integration.
• Infrastructure teams use version control.

Stage 4

• System configurations are automated.
• Provisioning is automated.
• Application configurations are in version control.
• Infrastructure teams use version control.

• Security policy configurations are automated.
• Resources made available via self-service.

Stage 5

• Incident responses are automated.
• Resources available via self-service.
• Rearchitect applications based on business needs.
• Security teams are involved in technology design and deployment.

• Security policy configurations are automated.
• Application developers deploy testing environments on their own.
• Success metrics for projects are visible.
• Provisioning is automated.

* The practices that define each stage are highlighted in bold font.

Foundational practices and the 5 stages of DevOps evolution

CAMS and the DevOps
evolutionary model
One of our driving hypotheses this year was that
the vast majority of successful organization-wide
DevOps initiatives are built on existing pockets
of success within one or more teams, and that
conversely, top-down initiatives without prior
success at the team level tend to fail.

2121 CAMS and the DevOps evolutionary model

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

This hypothesis comes out of the direct experience of the
authors of this report. We have all worked with multiple large
organizations where we’ve observed a distinct pattern of
success. One or more teams automate a few key things;
they reclaim time that used to be spent putting out fires;
and they invest that time in further improvements, which
helps to build momentum and support for change within their
team. This proof of success builds trust inside and outside
the team, and with appropriate organizational and managerial
support, these pockets of success spread to other teams
and across departments.

This doesn’t mean the path to wider DevOps adoption in
the organization is always smooth and trouble-free, nor
that scaling existing success automatically leads to the
entire organization humming along smoothly on a path of
continual improvement. DevOps practices are still relatively
new compared to the age of most large enterprises, and one
should expect it will take significant time, effort and discipline
to create change in a large organization.

The importance of effective leadership in a DevOps
transformation and the critical role that managers play
is discussed in our 2015 State of DevOps Report.

The 2015 DevOps Survey and its resulting database are the exclusive property
of Puppet, Inc. and DevOps Research and Assessment, LLC. All rights reserved.
Authors: Dr. Nicole Forsgren, Jez Humble, Gene Kim, Alanna Brown, Nigel Kersten

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 22

https://puppet.com/resources/whitepaper/2015-state-devops-report
https://puppet.com/resources/whitepaper/state-of-devops-report
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

The authors have all seen example after example of major top-
down IT-related initiatives — often labeled “DevOps” — that
have failed to deliver fundamental improvements such as the
ability to deliver IT services faster, with higher levels of quality.
Perhaps even more depressingly, it’s quite common to hear of
major differences in perception between the C-suite and folks
on the ground when it comes to evaluating progress. Even
when we allow for the pervasive skepticism among practitioners
in our industry, and the tendency of executives to present an
optimistic view both inside and outside their organizations, we
suspect there’s a serious disconnect here.

We wanted to measure the outcomes of IT-related initiatives
instead of relying on anecdotes, especially in view of the widely
differing perspectives that people relating these anecdotes
come from. So we turned to the CAMS2 model, a widely
accepted framework for DevOps. Originally coined by Damon
Edwards and John Willis, CAMS stands for culture, automation,
measurement and sharing.

The elements of these acronyms are, of course, broad
categories without formal boundaries. But the CAMS definition
has proven to be a useful and workable model over many years,
particularly as DevOps itself has evolved into new areas such
as mainframes, network operations and security.

2 itrevolution.com/devops-culture-part-1

Change management as it is traditionally applied
is outdated. We know, for example, that 70 percent
of change programs fail to achieve their goals,
largely due to employee resistance and lack of
management support. We also know that when
people are truly invested in change, it is 30 percent
more likely to stick.

mckinsey.com/featured-insights/leadership/changing-change-management

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 23

https://itrevolution.com/devops-culture-part-1/
https://www.mckinsey.com/featured-insights/leadership/changing-change-management
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

We hypothesized that if our survey respondents’ organizations
had delivered concrete progress in these four areas, then they
were further along in their DevOps journey. If an organization
hadn’t managed to achieve anything substantial, then it wasn’t
very far along.

We asked four questions for each of the CAMS pillars, ranging
from adoption within a single team to expansion across
multiple departments.

For culture, we asked:

Where would you say you are culture-wise on your DevOps
journey so far?

• We have a single team that has a strong DevOps culture.

• We have multiple teams within a department with a strong
DevOps culture.

• We have a single department that has a strong DevOps culture.

• We have a strong DevOps culture across multiple departments.

For automation, we asked:

Where would you say you are automation-wise on your
DevOps journey so far?

• Teams are automating services they control, for their
own needs.

• Teams are automating services they control, for others’ needs.

• Teams are collaborating to automate services for broad use.

• A few key services are available via self-service.

• Most services are available via self-service.

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 24

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

When it comes to measurement, we have found that
expansion from teams to departments manifests as a shift
from manually gathered IT system metrics to automated
measurement of business objectives. The most sophisticated
teams we’ve seen not only improved their IT processes and
practices, but also managed to focus on delivering business
value rather than just technology. These teams have applied
their existing cultures of automation and measurement to
business objectives.

For measurement, we asked:

Where would you say you are measurement-wise on your
DevOps journey so far? Select all that apply.

• We manually measure key system metrics (e.g., computer
performance, throughput, etc.).

• We automatically measure key system metrics.

• Business-level objective measurements are manually
gathered using system level metrics.

• Business-level objective measurements are automatically
available on demand.

For sharing, we asked:

Where would you say you are, sharing-wise,
on your DevOps journey so far?

• Patterns and best practices are shared within teams.

• Patterns and best practices are shared across teams.

• Patterns and best practices are shared across
the organization.

• Patterns and practices are shared outside the organization.

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 25

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

CAMS and the evolutionary scale
To understand an organization’s progress for each of the CAMS
pillars, we developed a model to measure each organization’s
position on an evolutionary scale. To create the evolutionary
scale, we scored responses based on how frequently the
respondent’s organization was doing each practice (1 = Never,
2 = Rarely, 3 = Sometimes, 4 = Most of the time, 5 = Always).
We then summed these scores to create a composite score.
Based on this composite score, we then grouped those
responses into three categories: Low, Medium and High.
Organizations that are employing all the practices with a high
frequency are highly evolved, or High. Those organizations
employing practices with low frequency are Low, and those
doing some practices sometimes are Medium. See the
Methodology section for a detailed explanation.

Ninety percent of respondent organizations are at least Medium.
Almost 11 percent are Low and just under 10 percent are High.
This tells us that DevOps practices have become mainstream,
and that it’s much harder to make the leap from Medium to High
than it is from Low to Medium. From this, we extrapolate that
organizations can gain a serious competitive advantage if they
concentrate on further evolving their DevOps practices.

We suspect that people can get to Medium status with less
effort because the automation path is relatively well defined,
but the jump to High requires implementation of DevOps
culture and sharing, which are more difficult to grasp and instill.

How does an organization’s evolutionary progress correspond
to CAMS? We found that the highly evolved organizations
(High) have expanded DevOps culture and practices across
multiple teams and departments, and that the least evolved
organizations (Low) have not.

Normalize the
technology stack

01

Standardize and
reduce variability

02

Expand
DevOps
practices

03

Automate
infrastructure
delivery

04

Provide self-service
capabilities

05

High

Medium

Low

11%

79%

10%

Percentage of respondents by evolutionary scale

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 26

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Culture
We see this pattern of expansion quite clearly for culture.
The highly evolved organizations had the lowest number
of responses to “We have a single team that has a strong
DevOps culture” and the highest number of responses to
“We have multiple teams within a department that have a
strong DevOps culture.”

Automation
The results around automation aren’t as clear, but past
experience has shown us that the path from a low degree
of IT automation to a high degree isn’t neat or linear. As you
automate more and more services, expanding outwards
from the core responsibilities of a single team, not only do
you discover more services that could be automated, but
you begin to deal with services that are increasingly difficult
to automate. That’s because services that span different
functional areas of the business have not only more
dependencies, but more complex ones, so automating them
is correspondingly more complex — and more expensive.

Cultural progress by evolutionary scale

14%

14%

38%

34%

10%

Low
evolution

Medium
evolution

High
evolution

15%

21%

54%

19%

9%

42%

30%

We have a strong DevOps culture ...

... across multiple departments.

... across a single department.

... across multiple teams within a department.

... across a single team.

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 27

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

We do see a distinct improvement from Low organizations to
Medium and High ones when it comes to teams collaborating
to automate services that are broadly consumed. We also see
a corresponding drop in the relative proportion of services that
are automated for internal team consumption only.

Our hypothesis is that the minimal difference in degree of
automation between the Medium and High cohorts reflects
the fact that automation is arguably the easiest-to-implement
pillar of the CAMS model. Automation is well understood by
technical people, has a relatively predictable path, and can
succeed if you give disciplined technical practitioners the time
and bandwidth to automate, along with a mandate to do so.

DevOps, however, is not just about automation. The cultural
changes that are required for DevOps success are
significantly more difficult to implement and require broader
organizational input and support. It’s also harder to measure
the outcomes in terms the business can understand. And
where it’s pretty easy to find leading examples for automation
that you can emulate, it’s harder to port one organization’s
cultural-evolution experience directly to another organization
and get a successful outcome.

Automation progress by evolutionary scale

Most services are available via self-service.

A few key services are available via self-service.

Teams collaborate to automate services for broad use.

Teams automate services they control, for others to use.

Teams automate services they control, for their own use.

5%

34%

12%

23%

26%

8%

Low
evolution

Medium
evolution

High
evolution

15%

15%

17%

46%

8%

37%

3%

22%

29%

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 28

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Measurement
Our hypothesis for measurement was that a more mature
DevOps organization would be more likely to have automated
a collection of key metrics, and that those metrics would
primarily speak to business objectives. We found this to be
true. Highly evolved organizations have significantly higher
levels of automated business metrics that are available on
demand, as well as the highest level of automated system
measurement. The High organizations also have the lowest
level of manually gathered system metrics.

All three groups — High, Medium and Low — had about
the same proportion of manually gathered business metrics.
We suspect this is due to the fact that there’s typically a
standard set of business metrics that people are used to
collecting manually — whether they’re doing DevOps or
not — such as revenue, renewal rates, customer acquisition
costs, overhead costs and variable cost percentages. These
may have automated elements, but tying together data from
disparate systems is often done manually. And automation
can get difficult quickly when you have, for example, one
system that starts each week on Monday, and a related
system that starts the week on Sunday. It can also be difficult
to decide when an order actually occurred in a company that
spans time zones or has complex procurement processes.

We manually measure key system metrics.

We automatically measure key system metrics.

Business-level measurements are manually
gathered using system level metrics.

Business-level measurements are
automatically available on-demand.

58%

42%
38%

19%

59%

26%
26%

7%

38%

66%

36%
34%

Low
evolution

Medium
evolution

High
evolution

Measurement by evolutionary scale

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 29

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Different roles, different
perspectives on progress
As we looked at how different roles — C-suite,
management, individual contributor — viewed their DevOps
progress, we found that the C-suite had a much more
optimistic outlook. For nearly all practices, the C-suite
reported higher frequency of use, in some cases with very
wide discrepancies. For example, 54 percent of the C-suite
reported that security policy configurations are automated,
compared to 38 percent at the team level. Fifty-seven
percent of the C-suite respondents reported that incident
responses were automated compared to 29 percent at the
team level.

It’s tempting to blame the C-suite for being out of
touch, but it’s important to keep in mind that upward
communications are often filtered and sanitized,
contributing to C-suite optimism.

The best countermeasures to this inaccurate
communication are the mutually reinforcing pillars of
automation and measurement. Automated systems enable
better reporting of business metrics. Rather than relying
on information that’s filtered upwards to executives, you
have an objective measurement system to share across the
business, helping everyone get onto the same page.

C-Suite Management Team

Teams contribute improvements to tooling provided
by other teams 64% 46% 35%

We balance lowering technical debt with
new feature work 61% 44% 33%

Incident responses are automated 57% 38% 29%

Security teams are involved in technology
design and deployment 64% 48% 39%

A cross-functional review is done before
implementation of a project 58% 47% 36%

Experiences and lessons are shared externally
(e.g., meetups / conferences, blog posts, etc.) 49% 38% 28%

Success metrics for projects are visible 58% 46% 38%

Rearchitect applications based on business needs
(e.g., reduce operational costs, ease of deployment, etc.) 57% 46% 37%

Resources (e.g., accounts, infrastructure, etc.)
made available via self-service 53% 42% 34%

Before starting a project, we establish concrete
success criteria 61% 51% 43%

Service changes can be made during business hours 61% 46% 43%

Teams use continuous delivery 58% 47% 41%

We create learning opportunities across teams
(e.g., training, internal DevOps workshops, etc.) 54% 48% 38%

Automate security policy configurations 54% 44% 38%

We have post-incident reviews and share results 64% 56% 48%

Differences in perception of DevOps practices in use

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 30

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Sharing
As DevOps evolution advances, we see sharing within the
organization increase — an expected outcome. Highly evolved
organizations move from sharing largely within individual teams
to sharing widely across the entire organization. We have found
that this sharing of best practices and patterns tends to go
hand in hand with higher degrees of well-designed automation.
It makes sense: As automation systems evolve and consist of
increasingly high-level abstractions that are more integrated
with the rest of your systems, it becomes progressively easier
to share automation and deployment patterns. Deployment
and consumption of these abstracted automation systems
becomes simpler and faster.

Sharing outside the organization is negligible for all cohorts,
which is a missed opportunity. It’s still too hard for enthused
teams in many enterprises to share their patterns and tooling
with the rest of the world, with their organization’s blessing.
The barriers are seldom technical. For example, a team may
have to jump through legal hoops to use open-source some
software, or get approval from the company’s public relations
team to share a case study or speak at an event.

Sharing by evolutionary scale

Patterns and best practices are shared ...

... outside the organization.

... across the organization.

... across teams.

... among individuals within teams.

4%

22%

38%

36%

3%
12%

26%

59%

4%

33%

33%

30%

Low
evolution

Medium
evolution

High
evolution

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 31

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Benchmarking and CAMS
CAMS is a useful model for benchmarking your
organization’s evolutionary progress.
Our data shows that highly evolved organizations:

• Have a DevOps culture that spans multiple departments.

• Have automated more services for broad use.

• Automate more measurement for business objectives.

• Share patterns and best practices broadly across
their organizations.

In the next chapters, we’ll dive deeper into each stage of the
DevOps journey.

Every organization starts from its own unique place. It has
legacy technologies, established ways of doing things, its
own specific business mission and its own particular culture.
So there is no single path to a DevOps transformation;
instead, there are many possible evolutionary paths.

Our research revealed five stages of DevOps evolution
and also a set of foundational practices that are critical
throughout a DevOps evolutionary journey. These
practices evolve as organizations evolve and are all
dependent on sharing.

Puppet | State of DevOps Report 2018

 CAMS and the DevOps evolutionary model 32

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 0: Build the foundation
Analysis of the data from the 2018 State of DevOps survey revealed the
foundational practices that successful teams employ. These practices
correlate so strongly with DevOps success, we’ve determined they are
essential at every stage of DevOps development. In other words, the
practices that must be adopted at any given stage in order to progress
to the next stage remain important even for those organizations that
have evolved the furthest on their DevOps journey, and that have already
showed the most success.

Each foundational practice can be described in a sentence:

• Monitoring and alerting are configurable by the team operating the service.

• Deployment patterns for building applications or services are reused.

• Testing patterns for building applications or services are reused.

• Teams contribute improvements to tooling provided by other teams.

• Configurations are managed by a configuration management tool.

When we examined each of these practices more closely, we found that
highly evolved organizations (see The evolutionary scale) were much more
likely to always be using these practices throughout the evolutionary journey
than the less-evolved organizations. What we take from our findings is that
the foundational practices listed above are integral to DevOps, and critical for
DevOps success.

3333 Stage 0: Build the foundation

Puppet | State of DevOps Report 2018

Back to Contents

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

The foundational practices and CAMS
The importance of the foundational elements of DevOps
shouldn’t surprise anyone who takes more than a passing
interest in DevOps. Other well-regarded constructs are built
around these same foundations. The CAMS model, one of the
earliest descriptions of DevOps, encompasses these foundational
known-good patterns, from the importance of measurement
and sharing to the need for automation. Other tropes and
methodologies common in the DevOps discourse, concepts such
as shifting left, empowered teams, test-driven development and
more also reinforce these foundational patterns and practices.

It’s all about sharing
On studying the foundational practices revealed by our
research, we realized that they are all dependent on sharing,
and that they all promote sharing.

• Monitoring and alerting are configurable by the team
operating the service. Monitoring and alerting are key to
sharing information about how systems and applications are
running, and getting everyone to a common understanding
that is vital for making improvements, whether within a single
team and function or across multiple teams and functions.

• Deployment patterns and testing patterns for building
applications or services are reused. Sharing successful
patterns across different applications or services often means
sharing across different teams, establishing agreed-upon ways
of working that provide a foundation for further improvements.

• Teams contribute improvements to tooling provided by
other teams. This form of sharing promotes more discussion
between teams around priorities and plans for further
improvements in tooling, process and measurement.

• Configurations are managed by a configuration
management tool. A configuration management tool enables
development, security and other teams outside Ops to
contribute changes to system and application configurations.
This makes operability and security a shared responsibility
across the business.

Our discovery that all the fundamental practices enable or rely
on sharing tells us that the key to scaling DevOps success is
adoption of practices that promote sharing.

It makes sense: When people see something that’s going well,
they want to replicate that success, and of course people want
to share their successes. Let’s say your team has successfully
deployed an application 10 times, and let’s also say this type
of deployment has normally given your team (and others) a lot
of trouble. Chances are, someone will notice and want to know
how you’re doing it. That’s how DevOps practices begin to
expand across multiple teams.

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 34

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

The 5 foundational practices, one by one
This section describes each foundational practice in some detail,
and how the practice contributes to the evolution of DevOps.

Monitoring and alerting are configurable
by the team operating the service
Core to the DevOps movement is the two-sided coin of
empowerment and accountability, which Amazon CTO Werner
Vogels summarized in his famous statement: “You build it, you
run it.”3 So our research looked at how many teams that run
applications and services in production — whether comprised of
devs, operators, software release engineers or others — are able
to define their own monitoring and alerting criteria.

Empowered teams that run applications and services in
production can define what a good service is; how to determine
whether it’s operating properly; and how they’ll find out when it’s
not. This empowered monitoring approach can take many forms.
For example:

• "Drop a monitoring config in a location and we'll pick it up.”

• "Log into this web interface to configure your monitoring."

• "Add some monitorable outputs to your infrastructure code."

• "Here's an API for you to configure monitoring as code."

3 Gray, J., Vogels, W., A Conversation with Werner Vogels, ACM Queue,
queue.acm.org/detail.cfm?id=1142065. June 2006, retrieved Aug 2018.

We found that once organizations start to see traction with
DevOps, 47 percent of the highly evolved (High) cohort are
able to define their own monitoring and alerting criteria for
apps and services in production, compared to just 2 percent
of the least-evolved (Low) cohort. The High cohort is 24 times
more likely to have adopted this practice! Conversely, the Low
cohort was 23 times more likely to never use this practice.

24x
more likely to make monitoring
and alerting configurable by teams

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 35

https://queue.acm.org/detail.cfm?id=1142065
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Frequency by evolutionary scale:
configurable monitoring and alerting

In our survey, we asked, “How frequently were these practices used after
you started to see some traction with DevOps?” Below is the breakdown of
answers for the practice, “Monitoring and alerting are configurable by the
team operating the service.”

Low Medium High

Always 2% 17% 47%

Most of the time 8% 37% 47%

Sometimes 27% 32% 5%

Rarely 38% 11% <1%

Never 23% 3% -

Empowering teams to define, manage, and share their own
measurement and alerting supports multiple elements of a
DevOps transformation, including:

• Sharing metrics as a way to promote continuous improvement

• Creating and promoting a culture of continuous learning

• Cross-team collaboration and empowered teams

• Development of systems thinking in individuals and teams

These factors are core to a strong DevOps culture, as we
discussed earlier, so it’s not surprising that the highly evolved
organizations we surveyed adopt this practice early.

Measurement is a core piece of DevOps
Empowered monitoring isn’t for just Ops or for some newly
created DevOps team: It’s for all teams that work with technology.
The embrace of empowered monitoring for all teams underlines
one of the most important points of DevOps: that you don’t need
to create a new team with new superpowers, but instead should
empower all existing teams so they can work together in new ways.

Self-service monitoring and alerting can just as easily and usefully
be adopted by:

• developers running their own code.

• a team of developers working with their operations
counterparts to deliver operable applications.

• a DevOps team working as a single cohesive group to
define their own monitoring practice.

• a complex team of teams where ops specialists monitor
applications delivered by devs as part of a broader system.

Regardless of the specific circumstances, self-service monitoring
and alerting is a countermeasure to the long-standing anti-
pattern of dev and ops working in silos. Simply opening access to
these key metrics enables a sharing culture, populates feedback
loops, enables continuous feedback, and promotes a culture of
continuous learning across teams.

Instilling ownership and accountability by empowering service
delivery teams to collect, share, and customize monitoring data is
a fundamental part of the cultural change of DevOps, and enables
even more fundamental shifts further along in the process.

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 36

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Reuse deployment patterns for
building applications or services
By the time our survey respondents had gained some traction
with their DevOps initiatives, 46 percent of highly evolved
organizations reported always reusing deployment patterns for
building applications or services, versus 2 percent of the least-
evolved organizations. So the highly-evolved teams are
23 times more likely to always employ this practice.

Frequency by evolutionary scale:
reuse of deployment patterns

We asked, “How frequently were these practices used after you
started to see some traction with DevOps?” Here is the breakdown
of responses for the practice, “We reuse deployment patterns for
building applications or services."

We asked about reuse of of deployment patterns because of
the special nature of application deployment in most, if not all,
organizations. Residing at the boundary between development
and production, application deployment is where Dev and Ops
most often meet — and most painfully collide. So improving
application deployment is right at the core of DevOps, as it
mediates the “wall of confusion”4 at the intersection of Dev and Ops.

The use of repeatable patterns — whether created in-house or
adopted from an external source — does more than alleviate
the immediate pain and confusion of deployment.
It also makes it possible to share and spread the knowledge of
how to deploy more widely in the organization, enabling more
teams and individuals to work together on what needs to be a
core competency for any business.

4 dev2ops.org/2010/02/what-is-devops

Low Medium High

Always 2% 14% 46%

Most of the time 7% 44% 47%

Sometimes 34% 33% 6%

Rarely 40% 8% 1%

Never 18% 1% -

23x

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 37

http://dev2ops.org/2010/02/what-is-devops/
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Reuse testing patterns for building
applications or services
Just like the ability to share and reuse deployment patterns,
organizations that are making progress in their DevOps
evolution use repeatable testing patterns.

As organizations are starting to achieve traction with DevOps,
44 percent of highly evolved organizations reported that they
always use repeatable testing patterns compared to fewer than
1 percent of the least-evolved organizations. That makes highly
evolved organizations 44 times more likely to use repeatable
testing patterns.

Frequency by evolutionary scale:
reuse of testing patterns

We asked, “How frequently were these practices used after you started
to see some traction with DevOps?” Here’s the breakdown of answers for
“We reuse testing patterns for building applications or services.”

Low Medium High

Always <1% 10% 44%

Most of the time 6% 38% 48%

Sometimes 32% 39% 7%

Rarely 40% 11% <1%

Never 21% 2% -

44x
highly evolved orgs are

more likely to reuse testing patterns

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 38

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Automated testing and reuse of testing patterns can be one of
the harder challenges to solve depending on your organization’s
structure and complexity. Though we do see this practice
adopted by highly evolved organizations in the early stages of a
DevOps evolution, it may not be the first thing you tackle. Here
are some considerations as you prioritize this practice:

• If quality teams are quite disconnected from dev and ops
teams, you may want to wait to integrate them into DevOps
initiatives later on. Focus on establishing good testing
patterns within your own team first. For ops teams, that could
mean having a process for testing infrastructure changes
before deploying to production. For dev teams, that could
mean implementing test-driven development (TDD) or other
methodology as part of your agile workflow.

• Activities closest to production, such as provisioning,
monitoring, alerting, etc., are often higher priority for teams
because that’s where more issues become visible. Solve your
deployment pains first to gain back time you can then use for
improving your testing practices.

• Testing patterns may be less reusable than deployment
patterns because testing deals with the specifics of an
application or service, and also covers many different
processes — smoke tests, unit tests, functional tests,
compliance tests, complexity tests — in both static/white box
or dynamic/black box environments.

• Testing in production is harder and often more complex than
testing in pre-production, as its goals are different from those
of pre-production test. Quality teams test in pre-production
for compliance, stability, security, customer satisfaction
and other core goals. With continuous delivery, teams can
experiment in production to test new ideas (e.g., via blue/
green or canary releases). This is valuable, but it's different
yet again from testing in production, which focuses on
quality, functionality, resilience, stability, and more.

We conclude that adoption of reusable test processes is a
fundamental practice, but tends to get pushed out later in
the evolutionary journey, after deployment patterns are well
established. If you have to prioritize, we recommend waiting
to tackle this one and focusing on the other practices first.
However, once you do adopt this practice, it’s important to
ensure that testing patterns are shareable. For example, you
can encode reusable tests into automated testing tools, and
share access to those tools along with the resulting reports
or dashboards among all stakeholders.

3939Back to Contents Stage 0: Build the foundation

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

Teams contribute improvements to
tooling provided by other teams
The ability to contribute improvements to tooling provided by
other teams stands out as a key foundational capability.

As organizations expanded their DevOps practices, 44 percent
of the highly evolved cohort reported that teams could always
contribute improvements to other teams’ tooling compared to fewer
than 1 percent of the least-evolved cohort. In other words, the highly
evolved cohort is 44 times more likely to employ this practice.

Frequency by evolutionary scale:
Contributing to other teams' tooling

We asked, “How frequently were the following used while you were expanding
DevOps practices?” Here’s the breakdown of answers for “Teams contribute
improvements to tooling provided by other teams.”

Low Medium High

Always <1% 11% 44%

Most of the time 4% 31% 45%

Sometimes 26% 40% 11%

Rarely 46% 15% -

Never 23% 3% <1%

Improvements to tooling are typically manual and ad hoc, and siloed
within a single team until some change drives the need to open
up to other teams. This change might be division-wide culture or
organizational changes; new cross-boundary data sources such as
semantic logging; or new collaboration across teams at functional
boundaries such as provisioning or release automation.

Because the practice of cross-team contributions to tooling is
dependent on teams putting their own houses in order first, we
believe adoption of this practice can be left to a later stage with
equal chances of success.

44x
highly evolved orgs are

more likely to contribute to
other teams' tooling

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 40

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Configurations are managed
by a configuration management tool
The practice of managing configurations with a configuration
management tool rapidly takes root once organizations start
to see traction with their DevOps evolution. Fifty-three percent
of the highly evolved cohort reported employing configuration
management always, compared to 2 percent of the least-
evolved cohort. The highly evolved cohort is almost 27 times
more likely to always use a configuration management tool.

Frequency by evolutionary scale:
Use of configuration managment tools

We asked, “How frequently were these practices used after you started
to see some traction with DevOps?” Here’s a breakdown of answers to
“Configurations are managed by a configuration management tool.”

Low Medium High

Always 2% 19% 53%

Most of the time 11% 37% 40%

Sometimes 28% 31% 8%

Rarely 36% 10% -

Never 24% 3% -

For long-time DevOps devotees, it is not surprising to see
this practice emerge as a baseline for success. Automated
configuration management was a prime mover of DevOps
for many years, especially in the earliest days of thinking
about infrastructure as code, and the DevOps movement
largely coalesced around the earliest innovators in automated
configuration management.

As DevOps evolves and expands, and developers liberated by
automated provisioning move increasingly toward continuous
delivery, Ops is under even greater pressure to maintain
uptime, performance and availability in production. Auditability
concerns also emerge as an organization’s processes mature.
So automated configuration and provisioning for production
become just as important as provisioning for development and
test. Achieving repeatability via configuration management
assures stable, reliable and auditable production environments,
and also enables later-stage capabilities — for example, self-
service that emerge as new goals for the DevOps initiative.

27x highly evolved orgs
are 27x more likely
to use configuration
management tools

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 41

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Implementing the foundational practices
in your organization
With so much evidence that the five foundational practices lead to success, we
know our readers will want guidance on how to implement them. Fortunately,
our research does provide some indication of which practices to start with.

Three practices were always in active use by the majority of highly evolved
organizations by the time they were seeing traction in their DevOps initiatives:

• Reusing deployment patterns.

• Using a configuration management tool.

• Allowing a team to configure monitoring and alerting for
the service it operates.

While these three practices are foundational capabilities, and form a baseline
for progression to higher levels of DevOps evolution, the order in which they
are adopted is not important. Do start here, but don’t worry about which
comes first. It’s likely you’ll recognize one particular practice as something
your own organization needs to prioritize.

The remaining two foundational practices are ones we recommend prioritizing
after the other three practices are well established:

• Reuse testing patterns for building applications or services.

• Empower teams to contribute improvements to other teams’ tooling.

Puppet | State of DevOps Report 2018

 Stage 0: Build the foundation 42

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 1: Normalize the
technology stack
Most organizations using any amount of technology
are dealing with a lot of complexity, slowing down their
efforts to advance the business. So it’s not surprising
that the earliest efforts in a DevOps transformation
(or any kind of business transformation) would center
around reducing complexity.

The two practices that define Stage 1 work to reduce complexity:

• Application development teams use version control.

• Teams deploy on a standard set of operating systems.

4343

Puppet | State of DevOps Report 2018

Back to Contents

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

Why DevOps evolution starts with simplification
Starting a DevOps evolution by reducing complexity may surprise people
who think of automation as the first step in DevOps, especially since
automation is a core pillar of the movement. In fact, the automation practices
typically associated with DevOps don’t show up significantly until Stage 4.
That’s because a lot of preparation has to take place before automation can
be properly designed and implemented.

Anecdotally speaking, we have seen organizations start with Stage 4
automation, without having been through normalization, standardization and
expansion (Stages 1-3). These organizations do not achieve success, and
we believe it’s because they lack a foundation of collaboration and sharing
across team boundaries. That sharing is critical to defining the problems an
organization faces and coming up with solutions that work for all teams.

Our research shows that DevOps evolution begins long before Stage 4, so
skipping the early stages means missing out on the learning that takes place
during these periods. The early stages are also when teams establishing and
succeeding at DevOps practices earn the trust of the business, which can
mean more resources and permission to progress faster.

Puppet | State of DevOps Report 2018

 Stage 1: Normalize the technology stack 44

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Application development teams use version control
The use of version control by application development teams
represents a fundamental shift in how teams produce software.
It’s the first step to implementing continuous integration on the
path to continuous delivery, which is frequently the goal of a
DevOps initiative.

When app teams are using version control, they're usually
producing deployable code much more frequently than before.
So the pressure on ops teams to deploy quickly while keeping
systems secure and stable increases. This is one of the main
drivers for DevOps, and it’s often how people know they need to
move forward in their DevOps journey.

Teams deploy on a standard set of operating systems
In the early stages of a DevOps evolution, we see a concerted
effort to normalize the stack and get rid of outliers or snowflakes
that need to be maintained, tested and managed as one-offs.
The more variance you have, the more complex, difficult and
time-consuming it becomes to manage your IT.

So it’s not surprising that the second defining practice for Stage
1 is deploying on a standard set of operating systems. In large
enterprises, it’s not uncommon to have multiple applications all
running on multiple OSes. For example, one application may run
on Windows 2012, another on Windows 2012 R2, and yet another
on Windows 2016. Eliminating even one of those variables
significantly reduces complexity, plus it becomes much easier to
build a shared pool of knowledge around a common tech stack.

In previous State of DevOps Reports, we’ve found that
the use of version control for all production artifacts
was highly correlated with key IT performance metrics:
deployment frequency, lead time for changes, and
mean time to recover. In last year’s study, our analysis
showed that the use of continuous delivery practices
— deployment automation, continuous integration and
testing, and version control for all production artifacts
— predicted lower levels of deployment pain, higher IT
performance, and lower change failure rates.

Puppet | State of DevOps Report 2018

 Stage 1: Normalize the technology stack 45

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Primary contributors to success in Stage 1
We found that the following practices had the
most significant impact for success in Stage 1.

• Build on a standard set of technology.

• Put application configurations in version control.

• Test infrastructure changes before deploying
to production.

• Make source code available to other teams.

Build on a standard set of technology
Building on a standard set of technology is a contributor to
success in Stage 1, it’s a defining practice for Stage 2, and it
shows up again in Stage 3 as a contributor to success. The
prevalence of this practice in the early stages of evolution
tells us that this is an important ongoing effort, and that the
practice itself is constantly evolving. Starting with specific
technologies within a single team’s sphere of influence,
standardization then spreads to technologies that require
buy-in from multiple teams.

From a business perspective, there are many benefits to
standardization: reduced licensing costs (it’s cheaper to
buy licenses in bulk); ability to hire for a specific skill set;
and shared knowledge across teams, which ultimately
leads to greater agility and faster delivery of higher
quality software.

While standardizing the tech stack provides clear
business benefits, rigidly adhering to standards can
put a damper on learning and innovation. The key is
to regularly revisit standards and build in exceptions
for innovation and experimentation.

We recommend standardizing with an eye to what is
optimal for all applications, not just a few applications.
Use proven technologies and reliable processes for
what goes into production, and provide clear processes
and guidelines for adding any new technology to enable
product incubations, research and experimentation.

Puppet | State of DevOps Report 2018

 Stage 1: Normalize the technology stack 46

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Put application configurations in version control
Putting your application configurations in version control is part of
the process of normalizing the environment. To keep things simple,
many teams initially combine their application configuration data
with their app configuration code. At some point in the lifecycle,
this becomes difficult to deploy and maintain, so app configuration
data gets pulled out into configuration files.

As development gets more distributed, teams need version
control, and put both application code and app configuration
files into their VC (version control) system. Eventually someone
realizes that configuration data and sensitive information need
to be managed more rigorously.

It’s standard practice to separate your data from your code
because some configuration data varies per deployment
environment (dev, test, stage, production) while application
code remains the same. It’s also how you ensure that your
sensitive information is safeguarded from exposure.

Separating data from code is low-hanging fruit, and makes sense
in these early stages. It also builds the foundation for automated
deployment. With app configurations in version control, you
can track who makes what changes, and roll back changes as
needed. If you’re just starting out, there are a host of key value
store tools available that solve this problem — for example,
etcd, ZooKeeper, and Consul. If you’re deploying to immutable
infrastructure, you’re forced to solve these problems up front.

Test infrastructure changes before deploying
to production
Also contributing to Stage 1 success is testing infrastructure
changes before deploying to production. This becomes a
critical practice at Stage 3. Teams at Stage 1 are normalizing
testing procedures for infrastructure changes, but it’s unlikely
that these are fully automated procedures going through an
established pipeline. That normally happens in later stages.

Testing infrastructure changes in Stage 1 does a few
important things. It builds trust in the system so teams can
gain autonomy to work without manual approvals, and also
provides the foundation for creating reusable deployment
patterns, which you can’t do unless you have a standard way
of testing changes.

Make source code available to other teams
Another practice with significant impact on Stage 1 is making
source code available to other teams. Opening up version
control is an early driver because it encourages collaboration
via contributions from other teams. It’s likely that there are
pockets of success around the organization, and reusing what
those teams have already built accelerates development of
capabilities, enabling success to scale.

Puppet | State of DevOps Report 2018

 Stage 1: Normalize the technology stack 47

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 2: Standardize and
reduce variability
In Stage 1, we see organizations normalizing their technologies
and processes. By the time they reach Stage 2, organizations have
already begun the process of standardizing on a set of technologies;
separated application configurations from data and placed them in
version control; and adopted a consistent process for infrastructure
testing and a pattern of sharing source code.

In Stage 2, organizations are working to further standardize and
reduce variability, a theme that is prevalent at every stage in the
DevOps evolution. Every organization has variance, which can stem
from a number of different causes, including:

• Adoption of new technologies to replace many functions of older
technologies; yet the older technologies never actually get removed.

• Homegrown products that don’t follow any common industry
standards and lack common interfaces.

• A proliferation of tools that overlap and haven’t been rationalized.

• Mergers and acquisitions.

4848 Stage 2: Standardize and reduce variability

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

At Stage 2, reuse of technologies and patterns becomes
important. This drives Dev and Ops to collaborate and make
architectural decisions that affect the deployability and
testability of applications. Because of driving toward these
commons standards, teams start to invent ways to increase
velocity in standards adoption, and further reduce variance. This
drives innovation at the team level to optimize processes and
workflows around the blessed technology stacks.

Teams collaborating together are likely to see success,
particularly through their primary interface points for
applications and processes — for example, Ops providing
good compute, storage and network deployments, identity
management and more. Service delivery will improve as
collaboration improves at this stage, reflecting Conway’s Law.

A primary anti-pattern to watch for at this stage is each team
normalizing on its own standards. This will lead to a greater
degree of global variance, and is exactly the wrong direction.

The defining practices for Stage 2 are:

• Build on a standard set of technology.

• Deploy on a single standard operating system.

One of the barriers to adopting DevOps in the enterprise is
the sheer complexity of the organization. As enterprises grow
over time, they inevitably add new applications and services,
adopt new technology stacks, and still have to deal with legacy
applications and systems. Technical debt piles up.

Because of increased complexity, fragile systems, and variable
processes, teams end up spending most of their time reacting
to problems rather than driving innovations. The answer in
this stage isn’t to adopt a new tech stack and re-architect
everything. This isn’t the time to add a new database. Instead
you need to standardize on proven technologies, optimizing for
the 80 percent cases and your global use cases. This can be
done only in collaboration with other teams.

The main benefit in this stage is reducing variables and therefore
complexity, buying time for further investments in collaboration,
automation, sharing, and metrics in subsequent stages.

Applying the scientific method
to reducing variables in software
The number of variables in any process or system
is directly proportional to its complexity. With
fewer variables in play, it is easier to execute a
process. And with fewer variables, you can also
isolate them, modify them and measure the impact
of each change. Next you reduce the variables to
optimize flow. Then you make changes in those
variables to further optimize output.

Puppet | State of DevOps Report 2018

 Stage 2: Standardize and reduce variability 49

https://en.wikipedia.org/wiki/Conway%27s_law
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Build on a standard set of technology
Let’s start from the perspective of a delivery team, whether
that’s a dev team responsible for delivering its own code, a
team that includes developers and operations people, or a
team that includes operators and software release engineers.
The team needs to deploy services. Is each service built on the
same architecture? Do they all use the same message queue?
Do they all use the same components and patterns? When the
answer to any of these questions is “No,” complexity enters the
system and the maintenance burden increases.

Once a delivery team has standardized its patterns and
components, the team no longer has to continually re-learn
how different technologies operate, scale, fail, recover, and
upgrade. The time recovered can be used to increase velocity
or to develop things that truly differentiate the application
or service — both of which can help provide a competitive
advantage for the entire organization.

Some teams do this without much thought. Others, particularly
those who inherit code from all over an organization, have to take a
methodical approach towards eliminating variables and achieving
standardization. Start by choosing foundational elements to
normalize on — for example, you could select a single relational
database management system and a single key value store.

If you’re starting with several combinations, elimination of
even one helps cut time spent on maintenance, not only for
the delivery team but also for other service-providing teams.

You can also reduce variables by normalizing your testing
workflows, build, and shipping patterns. The primary objective
here is that improvements and optimizations to the build/
test process apply to more than a single application, because
several apps use common components.

When building new applications or services, it’s
important to look at the tools you have. Rather than use
a new database, could you reuse what you have already?
Keep in mind that there are always costs for retiring
technology, but it’s usually worth it, as you recapture
those costs in savings over the long term.

The necessity of normalization and standards doesn’t mean
teams should not innovate. Ideally, teams driving better
understanding of their problem domain are innovating, and with
technology where warranted. There should be a lower barrier
to trying something, but the barrier should rise significantly
when it comes to introducing a new piece of technology into a
production lifecycle.

The key benefits of standardizing a team’s patterns and
technologies are:

• Faster delivery velocity.

• More flexibility for development staff to work on different
applications, services or components.

• Reduced surface area for security vulnerabilities.

• Fewer moving parts to maintain, upgrade and learn.

Puppet | State of DevOps Report 2018

 Stage 2: Standardize and reduce variability 50

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Deploy on a single standard operating system
If each software delivery team has normalized its own stack,
that’s a local optimization for this team — but what about the
operations team? If Operations supports several delivery teams,
they may have several normalized stacks to support. This is
where we see shifts into more global optimizations, often led by
operations. Allowing operations to select standards for operating
system and versions, monitoring interfaces and deployment
systems can eliminate several debates for software delivery
teams, giving them more time to focus on their core mission.

Organizations can move faster when a single operating system,
or a small set of operating systems, is the standard. You save
time on patching, tuning, upgrading and troubleshooting when
there’s just one OS or at least a very small number in use.

Operating system standardization seems straightforward at first,
but once you dig in, it isn't. If you support software applications
that have long life cycles, for example, you may have something
that works only on an operating system that was launched more
than half a decade ago. There may be incompatibilities between
specific patches and a particular application.

A common path forward is to first eliminate any stray operating
systems in your fleet. If you have five OSes, reduce to two. Next,
normalize your compute resources that are running the same
operating system. Make sure they have the same sets of patches,
the same update level, the same BIOS/firmware (if applicable), and
so on. If you don’t do this, all those variables will make it much
more complex to troubleshoot and perform maintenance. Once
you do normalize, you’ll have more time and attention available for
further improvements, and the right base to build them on.

Our advice for standardizing your operating systems:

• Even if you can’t get down to a single OS, remember
less is more.

• On a single operating system, work on reducing variability
as much as possible.

Beyond operating system standardization is the rest of
the technology stack. The owners and choosers of the
technologies in play here can vary. Standardizing across many
teams on technology choices like database systems, message
queues, logging aggregation utilities, monitoring/metrics
instrumentation and collection, and key value stores allows for
any lessons learned in supporting and maintaining those tools
to be reapplied to other applications and teams.

Puppet | State of DevOps Report 2018

 Stage 2: Standardize and reduce variability 51

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Standardizing in these spaces is a challenge. Often a
development team will gravitate towards new technology, or
something that specializes in a problem they have, without
taking into account the burden on operations and the cost
of caring for yet another piece of technology. For example,
if you need to store json blobs, a tool like MongoDB might
immediately come to mind. However, if you already have
PostgreSQL as a backend data store, you could put json
blobs in there, and so avoid learning about MongoDB, scaling
it, understanding its failure patterns, backup requirements,
monitoring hooks and more. And Ops will not be burdened
with yet another system to maintain.

Contributors to success in Stage 2
There are three practices that have a significant impact on
Stage 2 success:

• Deployment patterns for building applications and services
are reused.

• Rearchitect applications based on business needs.

• Put system configurations in version control.

Reuse deployment patterns for building
applications or services
While this practice contributes to Stage 2 success, it is also a
defining practice for Stage 3. See the chapter on Stage 3 for
a detailed analysis of this practice.

Use what you have
For a great perspective on using what you have
(rather than immediately branching into new
things just because you can), read the write-up
of Dan McKinley’s talk at boringtechnology.club.
Dan provides a real-world look at tool choice
from his time at Etsy, Stripe and Mailchimp.

Stage 2 and Stage 3 don’t necessarily have to
be performed linearly; however, our data shows
that organizations need to complete both stages
before moving on to Stage 4 in nearly all cases.

Puppet | State of DevOps Report 2018

 Stage 2: Standardize and reduce variability 52

https://twitter.com/mcfunley
http://boringtechnology.club/
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Rearchitect applications based on business needs
Teams at Stage 2 have made the deliberate choice to build on a
standard technology stack, so now they have to make changes
to existing applications. This is an opportunity to rearchitect
not only for new technology requirements, but also to check in
with the business and make any necessary adjustments there.
For example, there may be new auditing guidelines that require
more logging than before.

For some application delivery teams, rearchitecting could
mean replacing a home-grown message queue with a well-
known open source or commercial component. For others it
could mean updating architecture to fit with a deployment
model where app configurations have been separated from
application code.

The primary goal of architecture changes is to support
standardization and align with its goals — greater velocity and
easier maintainability. The sharing of common components and
interfaces has an additional benefit: Staff may have more time
to work on applications, instead of spending so much time on
the mechanics of delivery.

Put system configurations in version control
As we’ve seen in past State of Devops Reports, the use of
version control predicts IT performance: The teams that use it
have higher IT performance than those that don’t. In Stage 2 of
their DevOps evolution, teams are ensuring that system-level
configurations are in version control.

Storing system configurations in version control is a vast
improvement over scripts living on people’s workstations,
providing a number of advantages:

• You can see changes over time, see how they evolved,
 and know who made them.

• Anyone with access to the version control system can
audit changes.

• You get automatic backups of key configuration files.

Keeping system configurations in version control is also one of
the first steps to adopting software development practices for
infrastructure. This in turn is key to automated infrastructure
delivery, and a building block toward infrastructure as code.

During Stage 2, organizations storing configurations in
version control are deploying them via scripts, manually, or an
automation framework, depending on how far they have come
along their automation path.

Puppet | State of DevOps Report 2018

 Stage 2: Standardize and reduce variability 53

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 3: Expand
DevOps practices
Stages 1 and 2 reduce the overall complexity
of the tech stack so teams can achieve more
repeatable outcomes with limited variance. Stage 3
is about expansion of DevOps practices to the
wider group of teams in IT and service delivery.

In Stage 3, DevOps practices spread beyond the Dev and Ops
teams, where they first take root. As collaboration increases
and the organization focuses on improvements around service
management, deployment, reducing wait times and minimizing
approvals, these efforts touch areas beyond the technology
departments. Sharing improved tools, applications and services
— as well as knowledge — with other functional areas of the
business now becomes key to expanding on prior DevOps
success, and scaling DevOps across the organization.

5454 Stage 3: Expand DevOps practices

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

Our research shows that Stage 3 is where DevOps initiatives
morph from small pockets of success in a few teams to a wave that
spreads across and eventually transforms an entire organization.

We’ve observed in our findings that Stage 2 (reducing variation
in the tech stack) and Stage 3 can take place in order, in reverse
order, or at the same time. But both need to happen before
progressing to Stage 4 (automating infrastructure delivery). We
think it makes more sense to focus on reducing variability in the
earlier stages so that there are fewer one-offs to manage, saving
your team time and distraction. But if that's not possible because
some of those things are outside your control, then work first on
the things you can control. What’s most important is that the IT
service management team and any other teams relying on services
work together during this stage.

The defining practices at Stage 3 are:

• Individuals can do work without manual approval
from outside the team.

• Deployment patterns for building apps and services
are reused.

Individuals can do work without
manual approval outside the team
In past State of DevOps reports, we’ve found that having an
external change approval board had a negligible impact on
stability, but a detrimental effect on agility. Despite this evidence,
we see all too often that the authority to make decisions is
removed from the people who have the relevant information and
are doing the actual work.

Empowering teams and individuals certainly supports the
spirit of a DevOps evolution, in addition to getting work done
more quickly. When someone can get work done with minimal
handoffs, approvals and wait time, they’re happier and more
productive. So Stage 3 is where bureaucracy should shrink, and
processes should be redefined and updated to reflect the mutual
trust being earned via DevOps investments.

The data indicate that organizations in Stage 3 allow individuals
to work with relatively few approvals required from outside
the team. In some organizations, simple changes require review
and approval from a change advisory board, which includes
a mandatory waiting period. Successful organizations are
reducing this bureaucratic red tape by partnering with IT service
management (ITSM) teams to revisit processes, and building trust
to speed up approvals — or ideally, to eliminate them.

Stage 2 and Stage 3 don’t necessarily have to
be performed linearly; however, our data shows
that organizations need to complete both stages
before moving on to Stage 4 in nearly all cases.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 55

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

An example: An operations person could work with ITSM
teams and get approval to make certain types of standard
and safe changes. This probably means establishing a track
record of incident-free changes, creating a standard method
for deploying the standard changes, and documenting it. This
is a small, simple step that can help to build trust between
operations and the ITSM teams.

Another option is to give the operations team the power to
approve specific types of changes depending on the severity.
Perhaps a team lead or supervisor approves each change,
rather than routing changes to an ITSM team, another layer of
management, or multiple people. This approach can certainly save
time while helping to build trust in the operations team’s ability to
keep systems safe, efficient and aligned with business goals.

The primary driver of bureaucratic process is normally
communication and broadcasting of potential impacts and
issues. If those exigencies are kept in mind while shortening
and simplifying the change control process, people who want
to improve technical functionality can begin reversing their
view of change control as an obstacle to get around.

Deployment patterns for building applications and
services are reused
Universally, organizations in Stage 2 reuse deployment patterns.
Deployment patterns can be quite simple, or as sophisticated
as using specialized tooling that integrates with ticketing and
monitoring systems — and everything in between.

Reuse of deployment patterns at this stage can mean simply
that you have two software projects and that you deploy
both of them the same way, whether to dev, test, staging or
production. Someone who deploys App A should be able to
deploy App B without lots of documentation and hand-holding.

Some organizations begin by standardizing on entry points
for deployment — for example, to deploy any application, you
type ./deploy <environment>. The rest of the deployment
process may vary from one application to another, but at least
you have the same invocation to launch any deployment.
That's a good start.

Sometimes individuals can do lots of work without
approval from outside their management chain
simply because nobody else knows about it and
they can sneak the work in. While that accomplishes
the latter of the correlated data point, “Individuals
can do work without manual approval outside of the
team,” it isn’t the best path forward.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 56

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

The next step is to use the same tools for your deployments.
For example, all deployments may run through continuous
integration (CI), with the CI system performing a set of jobs
that result in a full deployment after passing. Your team may
use a specialized tool designed for an application suite, such
as enterprise resource planning (ERP) tools.

You also need to consider the order and style of your
deployments. Perhaps database migrations always happen
first. Systems may get flushed from load balancers before the
deployment or as part of it. Your organization might do blue/
green deployments or require an outage to deploy.

When running several types of applications and systems, you may
see some deployment patterns emerge as universal for all your
applications or systems, and others that apply to certain families
of applications — for example, n-tier web apps or cloud-native
services. Other patterns may be specific to an application.

Some organizations are strict about separation of duties, so
a team that deploys an application cannot be the team that wrote
and developed the application. This is an even stronger case for
unified deployment process flow, tools and patterns. Failures can
be investigated and managed uniformly across different services,
so the teams responsible for deployment are less likely to have to
go back to service authors when a deployment fails.

In organizations where deployment patterns are truly mastered,
multiple applications use the same pipelines and jobs for
deployment; only the application name and possibly a few
other parameters are fed to the job as configuration. With
deployments standardized and reused to this degree, any
optimization to the deployment job or pipeline is immediately
consumed by all applications, so the benefits multiply quickly.

Even if your organization has many cross-functional
self-sufficient teams, there is still a lot of value to reusing
deployment patterns. When each team invents its own
deployment patterns, that limits agility, and the team doesn’t
have time to spend on truly differentiating work. This also
makes it harder for developers and infrastructure engineers
to move between teams, which further limits agility (and, by the
way, makes it harder for your people to grow and develop at
your organization, threatening retention). It’s possible that with
cross-functional teams, deployment patterns will be
limited — for example, to entry points — and quickly move
into application- or service-specific details.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 57

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Infrastructure changes are
tested before deploying to production
A practice that’s associated with Stage 3 is testing infrastructure
changes before deploying to production. For success in expanding
your DevOps initiative, you need to demonstrate the ability to
make predictable and reliable changes.

Many people think infrastructure testing should be fully automated,
relying on continuous integration and an infrastructure-as-code
approach. While automation is more reliable and generally faster,
keep in mind that it’s the validating that matters, and that you can
test infrastructure changes manually.

Why are we pointing this out? Because infrastructure changes can
vary widely, and while some lend themselves to automation with a
reasonable amount of effort, other changes are just too infrequent
or expensive to validate in an automated fashion. So don’t get
too locked into the method — just make sure that you validate
infrastructure changes prior to a production deployment.

For example, when replacing core network switches in a data
center, the engineers should be sure they understand the new
switch, have tested its capabilities, have a deployment plan, and
know they must validate functionality. Most of this can be done
in a lab or development environment so most scenarios are
accounted for before production. Any change in production
should model the same paths taken in the lab environment.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 58

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Contributors to success in Stage 3
Six practices have a significant impact on Stage 3:

• Individuals can make changes without
significant wait times.

• Service changes can be made during business hours.

• Post-incident reviews occur and results
are shared.

• Teams build on a standard set of technologies.

• Teams use continuous integration.

• Infrastructure teams use version control.

We’ll discuss each of these contributing practices next.

Individuals can make changes without
significant wait times
At this stage of the DevOps evolution, our research shows that
organizations need to work on reducing wait times for approvals.
These make it harder to be agile, and go against the DevOps
principle of empowering people and teams.

But wait periods aren’t put in place just to be awkward, though it
can sure feel like that’s the case. It’s helpful to look at the reasons
for each wait and ask what would have to change in order to
eliminate it. For example, an approval requirement could predate an
improved process. So if a team could show 10 successful sequential
deployments — with no incidents — it’s possible that this type of
deployment could now be done without any waiting period at all.

Another angle is to look at what work can be done during business
hours versus the work that requires an outage window, off-hours
maintenance, or mandatory wait times, and to work on reducing
the number of operations that must be performed during off hours.
Again, it’s a matter of looking at what would have to happen to
eliminate that requirement.

Working to accomplish changes and deployments without wait
times isn’t about getting carte blanche permission to bypass
organizational process. It’s about revisiting why process exists so
you can simplify it, normalize it and optimize it. When processes are
simpler and consistent, they’re also easier to automate, which comes
in handy as organizations progress toward self-service.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 59

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Service changes can be made during business hours
As your team continues to expand DevOps practices —
and succeed — the constraints imposed by red tape and
bureaucratic process should be reducing. Once wait times have
been analyzed for reduction, you can move onto performing
service maintenance tasks and changes during business hours.

Some organizations do maintenance only during business
hours, making use of canary deployments, blue/green
deployments or active/passive sides of an application. These
architecture and deployment patterns optimize for rolling
change through the system often, and allow for a relatively
easy backout plan if a change goes awry.

Getting to the point where you can make changes during
business hours takes some preparation. First, you need to define
what business hours means for your organization. If you’re always
on (like a web service), customers both internal and external
may expect your service to be available all the time. Second, you
need to demonstrate success in making changes reliably so the
business partners and stakeholders of your service trust your
abilities. You need to be believed when you say changes will have
no impact on performance or customers.

Post-incident reviews occur and results are shared
Post-incident reviews are a blameless look back at what
happened during an incident, how it happened, and what
improvements could be made to shorten the duration of the
incident, improve the understanding of the systems behind the
incident, and prevent it from happening again. Post-incident
reviews come out of both the sharing pillar of CAMS and
DevOps principles. They are designed to replace traditional
approaches to after-action reviews such as root cause analysis,
and drive toward understanding and continuous improvement
rather than looking for a single cause for any incident.

A distinguishing feature of post-incident reviews is the
inclusion (where appropriate) of people who can provide
a business perspective on the incident. Participants can
include business analysts, management — even customers or
consumers of the application or service you’re reviewing — in
addition to IT teams, delivery teams, operations teams, and
ITSM teams. This cross-functional collaboration helps to foster
trust, and builds the sense of shared responsibility for success
and improvements.

Improvements from a well-run post-incident review can include
revisiting and simplifying processes; updating communication
patterns; and working from a position of empathy with other
stakeholders of the application or service.Learn about post-incident reviews from Jason Hand.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 60

http://postincidentreviews.com/pir
http://postincidentreviews.com/pir
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Once a post-incident review is done, share the results. People
who were not directly involved may be able to learn something.
They may spot a flaw in an adjacent process, or simply be
curious what happened when they couldn’t reach your site for
hours. Some organizations share results with their customers
publicly, while others make them available to internal customers
and stakeholders. The more you share, the more collaboration
and trust you’ll foster.

Teams build on a standard set of technologies
Building on standardized technology contributes to success in
Stage 1, is a defining practice of Stage 2, and shows up again as
a contributor in Stage 3. The prevalence of this practice in all
these stages tells us that standardizing on technologies is an
ongoing effort, not a single moment in time.

As mentioned in Stage 0: Build the foundation, the kind of
tooling improvements teams make evolve over time. Normally
this starts with separate teams making improvements for
their own purposes, so these efforts are siloed, ad hoc and
often manual. At some point, changes to the organization or
the technology drive a need to collaborate with other teams,
often at functional boundaries such as provisioning or release
automation. That’s when the real cross-collaboration on tooling
improvements begins.

Teams use continuous integration
In years past, we’ve seen using CI as a leading indicator
of whether or not a team will be high performing. CI is a
must-do in the DevOps space, right after version control
becomes ubiquitous.

CI systems and pipeline flow can vary immensely based
on the types of software in play, job construction, tooling,
and who consumes the workflow. The important things to
optimize for are feedback cycle time and correctness.
When feedback cycle times are short, more iterations can
occur, and so quality improves.

Correctness also matters, so CI systems require maintenance,
adjustments and improvement over time. For example, if you
add a new operating system or browser to your support matrix,
all relevant jobs should be able to pick it up. Or it may make
sense to run only fast tests during working hours, and wait
to run slower tests at night or during a weekly window when
feedback cycle time is not as critical.

Infrastructure teams use version control
The use of version control by infrastructure teams has a
significant impact on Stage 3 of DevOps evolution, and is also
an associated practice for Stage 4. See Stage 4: Automate
infrastructure delivery for a detailed analysis.

Puppet | State of DevOps Report 2018

 Stage 3: Expand DevOps practices 61

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 4: Automate
infrastructure delivery
Stage 4 is where infrastructure teams take
center stage. The defining practices at this stage
are all about automating infrastructure delivery
— what many think of as the beginning of a
DevOps initiative.

These infrastructure automation practices appear later in the
evolutionary journey than we might have expected because
they are enabled by things that characterize earlier stages:
normalization, reduction of variables, and expansion of the
DevOps evolution beyond tech teams into the business.
Success in establishing these factors in earlier stages
makes it much easier to achieve success in Stage 4.

Of course, this isn’t to say that infrastructure automation isn’t
happening in prior stages — it is, in a limited way. As we discuss
in the chapter Stage 0: Build the foundation, the practice of
managing infrastructure configurations with a configuration
management tool rapidly takes root early on, when operations
teams are standardizing to solve for their own needs.

6262 Stage 4: Automate infrastructure delivery

Puppet | State of DevOps Report 2018

https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
http://puppet.com

The key difference in Stage 4 is that the objective driving
infrastructure automation at this stage is to provide greater
agility to the entire business, not just for a single team.

While this stage is gratifying — it feels like you’re really doing
the DevOps now — it’s important to recognize that the previous
stages make it possible to get to infrastructure automation.
We’ve seen organizations try to jump immediately to this
stage without going through the prior stages, and the result is
frustration: It takes these organizations longer than expected to
make any real progress with infrastructure automation.

By establishing clear standards and cooperation across multiple
teams in earlier stages — and by achieving visible successes
that build trust in automation — infrastructure teams earn the
organization’s blessing to develop automation that can make a
clear difference to the business.

Automation for infrastructure evolves in Stage 4. It often
begins with teams automating for their own needs, and then
begins to align with the business. This is also the stage
where infrastructure automation develops to provide uniform
capabilities and services for technology delivery. The goal is to
provide more reliable services and capabilities through a formal
automation pipeline and workflow that couple with the services
and applications built on that infrastructure.

Infrastructure teams at this stage of the DevOps journey
begin to adopt agile development practices such as use of
version control for both system configuration and application
configurations, and adopt tooling used by application
development teams. Teams at this stage also automate
security policy configurations within their sphere of influence.

The nice thing about the early work that gets done in Stage
4 is that it is largely contained within the team itself, meaning
handoffs and coordination can often be kept to a minimum. This
allows the infrastructure team greater freedom to prioritize their
work and timelines.

The defining practices for Stage 4 are:

• System configurations are automated.

• Provisioning is automated.

Associated practices are:

• Application configurations are in version control.

• Infrastructure teams use version control.

Puppet | State of DevOps Report 2018

 Stage 4: Automate infrastructure delivery 63

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Automate system configurations
Automating system configurations and keeping them in version
control is one of the first things people think of when you
mention the automation pillar of CAMS. You need control over
your infrastructure layer in order to achieve agility with the
applications and services running on top of it. Once you can
repeatably deal with account creation/removal, load balancer
configuration changes, security patches and monitoring policy
updates, you’re no longer being held back by infrastructure that
lags behind changing business and application demands.

Configurations for systems are normally built or rendered
from a source of truth (version control) using an automation
framework that’s either off-the-shelf or internally created.
Some teams have a goal of automating all change, giving them
completely repeatable, rebuildable systems. Other ops teams
choose to automate the most common tasks – where the
return on investment is easy for other teams and management
to see — leaving the complicated or infrequent changes to be
dealt with in a more ad-hoc manner.

While many teams look to automation to speed up changes, that’s
just one benefit of infrastructure automation. There are others:

• Overall speed. Automated tasks should be faster than
manually completed tasks.

• Consistency. Automated tasks follow a set process and thus
produce predictable results.

• Documented behavior. Tasks now have a defined way they
are supposed to work, so are easier to troubleshoot.

• Portability. With the right automation framework, teams
can use content written by others to improve velocity and
maintenance of their automation library.

By starting with higher ROI items, you’ll effectively start paying
for the investment in automation right away. This time can then
be spent automating more things, simplifying processes, or
improving other services built on the infrastructure.

When you begin automating infrastructure, automate
items you run into with the highest frequency across
the widest swath of infrastructure components.
This will have a big impact, free up your own time
in meaningful ways, and buy you time to work on
more complex automations. For example, automating
logging or monitoring configuration for all systems
will free up time while providing consistency.

Puppet | State of DevOps Report 2018

 Stage 4: Automate infrastructure delivery 64

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Automated provisioning
Automated provisioning is another defining practice at Stage 4.
When combined with automated system configurations,
you get the basis of a self-service infrastructure (covered in
Stage 5). This significantly changes the role of operations from
order-takers to owners and operators of a service-providing
organization. Instead of treating each service request as a one-
off, operations teams develop and offer a menu of standardized
services aligned with business objectives.

Provisioning can be the automatic creation of a resource of
nearly any type. Most often, teams use the word when they’re
talking about OS instances, network connectivity, storage, and
accounts. However, some teams take automated provisioning
much further, with hooks into pager systems, DNS, CDN, load
balancers, databases and more.

As with system configurations, it’s best to begin with the most
frequently requested item; gain some wins, consistency and
time savings; and then move onto the next most frequent
request. As with most steps in the DevOps evolution, you want
to choose tasks that will win the confidence — even gratitude
— of others both inside and outside your team.

At this point, provisioning could be done with a framework,
or even a set of shared scripts and utilities stored in version
control. The key is that the team can level up and perform the
provisioning in an automated way. A key acceptance criteria
for good automated provisioning is that the customer can’t
tell who was assigned the provisioning tasks (implying that no
special adjustments were made by individual people on the
infrastructure team).

We did not ask survey respondents about storing
application configurations in service discovery
and key value stores such as etcd, Consul, and
ZooKeeper. All of these are great for real-time
look-up and provide system-wide health checks,
discovery and routing. Some teams have built
versioning workflows around these tools, while
others work with them as a live system.

Puppet | State of DevOps Report 2018

 Stage 4: Automate infrastructure delivery 65

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Application configurations are in version control
By now your application source code is in version control.
Great. What about the configuration for your application?
Many applications, whether off-the-shelf or developed in-house,
are built using some patterns from a 12-factor application.
Even if an application doesn’t follow all 12, configurations are
normally externalized, not hard-coded into the application.

The settings that make your application deployment operate
in your environment are critical. Gone are the days when an
administrator would log directly into a system and then hand-
edit a property file. Application configurations should be
versioned, auditable, contain history, and ideally, the reasons
why they’ve been changed.

Separating your app configurations from source code allows
for the same source code and artifact to be deployed and
validated across multiple environments, with the only change
being in configuration.

This separation becomes paramount when you want
to provision individual development environments or
move towards self-service. It’s not efficient to recompile
an application for each and every user, or hardcode their
parameters into it. Thus, separating code from configuration
data allows for more rapid deployments, updates, and validation.

Infrastructure teams use version control
One of the important shifts that happens in Stage 4 is
infrastructure teams adopting good development practices,
such as the use of version control. As previously noted, the use
of version control for all production artifacts is highly correlated
with IT performance. It’s the first step to continuous delivery
of your infrastructure code. Use of version control makes it
easy to recreate environments for testing and troubleshooting,
boosting throughput for both Dev and Ops. It also reduces the
time to recover if an error is identified in production. You can
quickly either redeploy the last good state, or fix the problem
and roll forward, all with history and auditing capabilities.

Puppet | State of DevOps Report 2018

 Stage 4: Automate infrastructure delivery 66

https://12factor.net/
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Contributors to success in Stage 4
Two key practices have a significant impact on Stage 4:

• Automate security policy configurations.

• Make resources available via self-service.

We’ll discuss each of these below.

Automate security policy configuration
Beyond having security policies, organizations often have
external constraints that require demonstration of and adherence
to security policies via measured controls. Those external
forces can be an audit committee, Sarbanes-Oxley, Payment
Card Industry Standards (PCI), NIST, General Data Protection
Guidelines (GDPR) and myriad other regulatory standards.

At this point in the DevOps evolution, most security policy
automation occurs at the team level, with the primary objective
being to ensure that interaction with auditors is kept to a
minimum. It’s done this way for practical reasons, as the team
level is where handoffs are minimal and ROI is immediately
realized. As the organization improves and evolves, it will start
to solve the security policy problem more broadly.

The best way to adhere to security policy is to know whether
you’re compliant, and fix systems when you’re non-compliant.
Organizations evolving on their DevOps journey do just that.

There’s an evolutionary cycle for automating security policy,
and it often starts with a single team member automating some
policy by writing a scanner for the policy. Then she might write
a corrector or enforcing script. From there, the script might
generate a report that can be archived or shared among security
teams or auditing staff.

As security policy automation gets a bit more mature, the use
of configuration management systems emerges. Configuration
management enables policy to be enforced upon system
convergence, and reports to be handled in a standard way.
Placing security policy into infrastructure configuration
management acts as a normalizing function for the team —
meaning any team member can update or improve enforcement
of policy via the codebase.

From an application development team’s perspective, the
infrastructure it relies on must be compliant with security
policy. A configuration management tool will consistently
enforce the correct policies underneath the applications.
This doesn’t mean application delivery teams have nothing to
do, though. Some teams may run static analysis on code via
their continuous integration pipelines. Some teams will also use
external tools to scan their applications for vulnerabilities such
as the OWASP top 10 via external tools.

Resources are made available via self-service
This practice is discussed in the next chapter
Stage 5: Provide self-service capabilities.

Puppet | State of DevOps Report 2018

 Stage 4: Automate infrastructure delivery 67

https://www.owasp.org/index.php/Top_10-2017_Top_10
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Stage 5: Provide
self-service capabilities
To move to Stage 5, an organization must have multiple
departments committed to providing IT capabilities as a
service to the business, rather than treating IT as a cost
center that executes work orders. These departments
include development, operations, security, ITSM and
other functional areas.

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 68

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

In this last stage of the DevOps evolution, we see benefits
to the organization multiply enormously as successful
collaboration across functional boundaries accelerates.
These gains are seen in several distinct areas:

• Application architecture moves beyond standardizing on
technologies and begins to evolve towards working with
and supporting cloud migration, container adoption, and
proliferating microservices.

• Security policy automation moves from servicing the needs
of a team to becoming the baseline for how security and
compliance are measured throughout a department, or even
the entire organization. Additionally, automated provisioning
advances to provisioning of whole environments for
developers, testers and other technical staff.

Once you start succeeding across multiple functional
boundaries, the pillars of DevOps — Culture, Automation,
Measurement, and Sharing — become more pervasive across
the organization.

The two defining practices for Stage 5 are:

• Incident responses are automated.

• Resources are available via self-service.

The two associated practices in this stage are:

• Rearchitect applications based on business needs.

• Security teams are involved in technology design
and deployment.

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 69

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Incident responses are automated
Manually responding to critical incidents is expensive in multiple
ways. It’s expensive in terms of engineering attention and focus,
and it’s expensive in terms of the time it takes to detect, identify
and remediate the incident. Particularly when dealing with
intrusions or malware, a response can be very expensive indeed
if it doesn’t completely remediate the issue. Missing just one
infected machine or command-and-control server address is all it
takes to render the entire response useless.

All of this means there’s a huge amount of value to be gained
by automating incident response. Automating eliminates
unnecessary distractions, improves time to remediation
by reducing handoffs, and ensures that your remediation
processes are consistently applied.

Fully automating your incident response system is a daunting
task, but you don’t need to automate for every type of
incident. Instead, think about your automation as being there
to augment human judgement. Focus on the processes and
systems that let you identify issues, as well as those you
deploy when responding. Make it simple for your operators
to get to whatever data they need to form a judgement, and
once they’ve done so, automate response processes — things
like adding a malicious IP to all your firewalls across your
infrastructure; collating data for later forensics; or completely
isolating an infected machine.

For those of you in smaller environments, it may not be
immediately obvious why automated incident responses
don’t come into play until Stage 5. It’s because of significant
organizational and process barriers in enterprises that often stop
incident-response people from achieving complete remediation.
Lack of access to metrics and logs; having to file tickets to get
others to validate firewall rule changes; the need for signoffs
from service owners; the inability to push final changes through
to production — all of these barriers to fast feedback and action
cycles must be removed in order to add automation to your
incident responses. Many enterprises haven’t reached this point.

Some fundamental technical capabilities need to be in place to
deliver automated incident responses, but it’s equally important
to have a collaborative relationship with your security team.
Bring the security team into the development lifecycle early,
and start small by collaboratively automating response to one
specific type of incident that crosses functional boundaries.

Alien Vault have compiled a
great set of automated incident
use cases here.

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 70

https://www.alienvault.com/blogs/security-essentials/automated-incident-response-in-action-7-killer-use-cases
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Resources available via self-service
Great self-service systems are an incredible enabler across
a business. The more you empower people to work at
their own speed without having to wait — for tickets to be
approved, license keys to be obtained, network settings to
be updated or required configurations to be applied — the
less frustration individuals will experience, the easier it will
be to standardize configurations, and the more predictable
work will be. Having to switch focus while you wait for
someone else kills progress, not to mention enthusiasm for
the task at hand.

It’s important to note that you can and should be working
towards self-service well before this stage, and it’s
absolutely possible to deliver real value incrementally before
you reach the point of a comprehensive self-service catalog.
Teams should build self-service systems for themselves
and then their adjacent teams, next expanding outwards
through the organization. This is exactly what the data
shows successful teams do.

Comparing our Low and High evolutionary cohorts, we
see this exact shift from a high proportion of self-service
systems for internal team usage towards multiple teams
collaborating to deliver systems that will be broadly
consumed across the organization.

Most services are available via self-service.

Teams are automating services they control, for their own need.

A few key services are available via self-service.

Teams are collaborating to automate services for broad use.

Teams are automating services they control, for others’ needs.

5%

12%

34%

23%

26%

3%

15%

17%

15%

46%

8%
3%

37%

22%

29%

Low
evolution

Medium
evolution

High
evolution

Automation progress by evolutionary scale

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 71

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Rearchitect applications based on business needs
The rearchitecting of applications in response to the business
shows up in Stage 2 as a contributor to success, but our
hypothesis is that there’s a difference between what this means
in the two different stages. We believe that in Stage 2, the activity
is primarily technology stack standardization — for example,
consolidating down to one or two database systems or middleware
systems. We suspect that in Stage 5, rearchitecting applications
for the business means more fundamental surgery is performed:
adopting the 12-factor app methodology, moving to microservices,
adopting containers or replacing components with cloud services.

Security teams are involved in technology
design and deployment
As we discussed in Stage 0: Build the foundation, shifting
left is about bringing more teams into the development and
delivery process — for example, quality, security, database,
audit and networking. Most teams begin the leftward shift by
addressing deployment pain, which is the functional boundary
between Dev and Ops. This represents one step to the left,
whereas involving other teams such as quality and security
means shifting the focus several steps further to the left, well
before deployment. So it makes sense that getting security
teams involved happens later in the DevOps evolution, after
more acute problems have been addressed.

In our 2016 State of DevOps report5, we found that high
performers spend 50 percent less time remediating security
issues than low performers. This is because they build security
into the software delivery cycle as opposed to retrofitting
security at the end.

At Stage 5, security teams should get involved early in the
software development process by:

• Conducting a security review for all major features while
ensuring that the security review process does not slow
down development.

• Integrating information security into the daily work of the entire
software delivery lifecycle. This includes providing input during
the design of the application, attending software demos and
providing feedback during these demos.

• Testing security requirements as a part of the automated
testing process.

• Creating pre-approved, easy-to-consume libraries, packages,
toolchains and processes for developers and IT operations to
use in their work.

5 The 2016 DevOps Survey is the property of Puppet, Inc. and DevOps Research and
Assessment, LLC. All rights reserved. Authors: Dr Nicole Forsgren, Jez Humble,
Gene Kim, Alanna Brown, Nigel Kersten

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 72

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Perceptions of automation within the organization
Interestingly, there’s generally very little difference in perception
between the C-suite, managers and teams when it comes
to automated self-service systems. This consistency can
be explained by the fact that by their nature, there is wide
awareness and impact of such systems, particularly those that
are broadly consumed. The degree to which most services are
available by self-service does show a difference in perception,
one that is consistent with our findings around unrealistic
optimism among C-suite executives.

Contributors to success in Stage 5
For any item you’re looking to deliver via self-service, map
out your existing manual process along with all required
approval workflows and look for optimizations. It’s common for
organizations to institute manual approval steps in response to
incidents and then rarely revisit them as environments evolve
and new areas of automation become possible.

A common anti-pattern we’ve seen is for organizations to make
significant investments in their self-service platform, yet use it to
deliver only uncustomized payloads. You may be improving cycle
times for your users by making it trivial to install software, but if
you don’t put the work in to customize catalog items for your
business, you won’t see the truly significant gains that are possible.

A common blocker for organizations is to focus on self-service
platforms that are easy for a human to drive, but difficult to be
consumed by an automated pipeline. Whether teams are building
something themselves or deploying an off-the-shelf self-service
catalog, it’s critical that the platform can truly operate as an
underlying substrata for other solutions such as CI/CD pipelines.

The value your operations and security teams should provide
is their opinionated expertise, and the more you can bake this
expertise into deployed software, the better your results will be.
This doesn’t mean that you ignore the needs of the users who
consume the software: you need to understand what they’re trying
to achieve, have empathy for the environment they work in, and
balance that with operational and security requirements. In many
ways, this requires a shift towards a product-manager mindset.

Teams

32%

29%

21%

13%

5%

Management

33%

28%

25%

10%

5%

C-Suite

33%

28%

21%

7%

10%

Teams are collaborating to automate services for broad use

Most services are available via self-service

Teams are automating services they control, for their own need

Teams are automating services they control, for others’ needs

A few key services are available via self-service

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 73

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

This is why it’s important for teams to start with self-service
for their own use. Their own problems are the problems they
understand best, so there’s naturally more empathy for the
user. Serving the customer you know best provides a great
opportunity to start learning how to build self-service.

It becomes progressively more difficult to understand the user’s
needs as the user gets further and further away, organizationally
and functionally, from the team building the service. While
empathy and a product-manager mindset helps bridge these
gaps, ultimately you’re going to need to build these services
in collaboration with the teams who are delivering adjacent
functionality, as well as the teams who will consume your service.

App developers deploy testing
environments on their own
When application development teams can deploy testing
environments on demand, they are more productive (because
they don’t have to wait for a new environment, go back and
forth via tickets, etc.), and application delivery is faster. Ops
teams also benefit from providing this self-service capability,
because they can then spend more time optimizing the system
instead of provisioning systems. Once developers can deploy
testing environments, it becomes much easier to enable
automated deployments.

Automate security policy configurations
This practice proves to be significant in the later evolutionary
stages of DevOps (see Stage 4: Automate infrastructure
delivery). Why? Because security policy configurations are
one of the harder things to automate.

Despite the difficulties, it’s well worth automating security
policy configuration. It’s far cheaper to prevent and mitigate
security issues in the application design than it is to react
to them in production. Automated incident response (as
covered above) is just one aspect of this more fundamental
collaboration across functional boundaries.

That’s why there’s a “shift-left” movement in security right
now. Security considerations are shifting from being primarily
operational concerns in production to being incorporated in
application design and build. It’s a counter-movement to the
traditional way of building software, where entirely separate
teams focus on different parts of the build cycle. In this
scenario, it’s all too easy for each team to ignore or forget
the concerns of other teams — at least until an incident
occurs once the application is in production. So, just as
bringing development and operations teams together enables
operational considerations to be part of application design, the
same is true for security teams and their areas of responsibility
— they need to be included early in the software design cycle.

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 74

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Success metrics for projects are visible
Stage 5 is the first stage where we see a significant number of
respondents saying their organization makes success metrics
visible. This finding stands in sharp contrast to the common
advice that teams should implement dashboards early in their
DevOps process.

However, it's not surprising. You need automated mechanisms
in place to share metrics broadly, and that degree of
automation is normally achieved in Stage 4, after a lot of
groundwork has been done in the prior stages.

Once success metrics are clearly defined and visible to
everyone, you'll find it's far easier to get agreement on what
needs to be addressed next for the health of the business.

Puppet | State of DevOps Report 2018

 Stage 5: Provide self-service capabilities 75

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Conclusion
Every year, the State of DevOps Report teaches us something new.
This year, our data has showed us that while there are many individual
paths through a DevOps transformation, there are ways to achieve and
scale success faster. Organizations have a choice: they can choose to be
systematic about how they evolve, or they can take a more scattershot
approach. Of course, it’s possible that even an ad-hoc approach could
work, but what we see among organizations that have reached the highest
levels of DevOps evolution is that they didn’t get there by accident.

We're thrilled to be able to provide something so concrete and useful to teams that
are working hard to improve how they work and their responsiveness to the business.

We hope this report has given you some good ideas, and perhaps helped you realize
you're moving forward on your DevOps journey better than you thought.

No matter what your response, we'd love to hear from you. Tell us about your
challenges and triumphs, and ask us any questions you may have.
You can reach us at: devopssurvey@puppet.com.

Puppet | State of DevOps Report 2018

 Conclusion 76

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Methodology
Full Methodology can be viewed here

The five stages of DevOps evolution
One of the primary goals of this research was to understand the adoption patterns of
DevOps practices as organizations evolve. Our hypothesis was that there are distinct
stages in a DevOps evolution and specific practices that enable organizations to scale
success beyond isolated teams. We tested a large group of DevOps practices. Five factors
representing five stages of DevOps evolution success were created using factor analysis.
The two most distinctive factors (those that had high statistical significance and the least
amount of overlap across other stages) were chosen to represent each stage.

In all, ten defining practices were determined based on factor analysis and these were used to
create five positions along the DevOps evolutionary journey. These practices were then rank-
ordered based on the percentage of organizations that consistently adhere to them within a
stage. The higher the percentage of organizations that frequently adhere to a practice within
a stage, the earlier it is in the evolutionary journey. The lower the percentage of organizations
that frequently adhere to a defining practice within a stage, the more advanced that practice
is on the evolutionary journey. At each stage, the remaining attributes tested were regressed
against the defining practices for a particular stage. The result is the creation of a set of key
contributors to success at each stage of the evolutionary journey.

The evolutionary scale
In order to determine each organization’s position within the DevOps journey, we determined
whether or not an organization consistently adhered to the defining success practices at
each stage of evolution. We then summed all the defining practices completed across
all stages, and produced a score that represented a given organization’s position on the
evolutionary scale. Organizations were next placed in one of three groups — Low, Medium
or High — based on the number of defining practices they consistently perform.

Organizations that consistently adhere to all defining practices are considered highly
evolved (High), while those that consistently adhere to only a few are positioned at early
stages of the evolutionary journey (Low). If an organization performed the key practices in
Stage 1 frequently, but did not frequently perform any of the key practices in Stages 2

through 5, we deemed that organization was not highly evolved. If an organization frequently
performed all key practices in Stage 1, as well as all key practices in Stages 2 through 5, we
deemed that organization was highly evolved.

Target population and sampling method
Our target population for this survey consists of practitioners and leaders working in, or
closely with, IT, and especially those familiar with DevOps. Even though we don’t have a
master list of these people, we were able to describe their characteristics. However, we
don’t know exactly where they are, how to find them, or how many of them exist, so we used
two methods to obtain respondents:

• Snowball sampling. This means we promoted the survey via email lists, online promo-
tions and social media, and also asked people to share the survey with their networks,
growing the sample like a snowball. This sample is therefore likely limited to organizations
and teams that are familiar with DevOps, and as such, may be doing some of it. We also
extended our survey globally to the Asian Pacific region, Europe, the Middle East and
Africa, offering it in four languages other than English: French, German, Japanese and
Malaysian. These languages were chosen because they are first languages in regions
where we know that interest in DevOps is high.

• Panel sample. The snowball sample was supplemented with a panel sample. These were
acquired from third-party panel providers, and their presence reduces bias in the overall
sample. In this particular instance, our third-party panel provider nurtures and maintains
a quality, engaged membership panel built to support its market research clients and
to benefit non-profit organizations. The panel provider’s unique approach to recruiting
yields a highly engaged group of people who, as respondents, are dedicated to helping
our market research clients fulfill their information needs. The panel provider’s unique
non-profit recruitment method enables the firm to source C-suite executives, directors,
and managers who have key decision-making authority. In addition to their non-profit
relationships, the firm also utilizes trade association partners to help drive certain audi-
ences into online surveys. This approach provides access to the appropriate sample for
each survey. The advantages offered by this panel are core to our differentiation.

Statistical analysis methods
• Factor Analysis. The five stages of DevOps evolution are derived with a data-driven

approach, using factor analysis.
• Regression analysis. When predictions or impacts are cited linear regression (stepwise

method) was used.
• Study design. This study employs a cross-sectional, theory-based design.

Puppet | State of DevOps Report 2018

 Methodology 77

https://puppet.com/2018-state-of-devops-report-full-methodology
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

Author biographies

Nigel Kersten is the chief technical strategist at Puppet,
where he has held a variety of roles, including head of
product, CTO and CIO. He came to Puppet from Google
headquarters in Mountain View, Calif., where he was
responsible for the design and implementation of one of the
largest Puppet deployments in the world. Nigel has been
deeply involved in Puppet's DevOps initiatives, and regularly
speaks around the world about adoption of DevOps in the
enterprise and IT organizational transformation.

Alanna Brown is director of product marketing at Puppet,
where she's had the privilege of helping Puppet grow
from a small startup to a global brand with thousands of
customers around the world. She conceived and launched
the first anual State of DevOps Survey in 2012, and has
been responsible for the survey and report since then.
In addition to heading up DevOps research, Alanna is
also responsible for driving the go-to-market strategy for
Puppet's product portfolio and cultivating relationships
with customers to drive DevOps adoption.

Michael Stahnke is director of engineering at Puppet. He's held
a few roles and been a part of the company growing from 35
to 520+ employees. While staying near the domains of release
engineering, operations, and community, he’s been in leadership
for most of the last decade. His interests are building teams,
mentoring team members, driving change with customers, and
playing with his son. He came to Puppet from Caterpillar, Inc.
where he was an infrastructure architect, infrastructure team
lead, and open source evangelist. Michael also helped get the
Extra Packages for Enterprise Linux (EPEL) repository launched
in 2005, authored Pro OpenSSH (Apress, 2005), and writes
with some frequency about technology and computers. Follow
Michael @stahnma on Twitter and Medium.

Andi Mann is chief technology advocate at Splunk
and an accomplished digital business executive with
extensive global expertise as a strategist, technologist,
innovator, and communicator. For over 30 years across
five continents, Andi has built success with Fortune 500
corporations, vendors,governments, and as a leading
research analyst and consultant. Andi is also a sought-
after commentator on business technology. He has been
published in USA Today, The New York Times, Forbes,
CIO, and The Wall Street Journal; presented at Gartner
ITxpo, VMworld, CA World, Interop, Cloud Expo, and
DevOps Summit; and participated and hosted interviews
for radio, television, webcasts, podcasts, and live events.

Puppet | State of DevOps Report 2018

 Author biographies 7878

http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

About Puppet
Puppet is driving the movement to a world of unconstrained software
change. Its revolutionary platform is the industry standard for automating
the delivery and operation of the software that powers everything around
us. More than 40,000 companies — including more than 75 percent of
the Fortune 100 — use Puppet’s open source and commercial solutions to
adopt DevOps practices, achieve situational awareness and drive software
change with confidence. Headquartered in Portland, Oregon, Puppet is a
privately held company with more than 500 employees around the world.

Learn more at puppet.com.

About Splunk
Splunk Inc. (NASDAQ: SPLK) turns machine data into answers.
Organizations use market-leading Splunk solutions with machine
learning to solve their toughest IT, Internet of Things and security
challenges. Join millions of passionate users and discover your “aha”
moment with Splunk today: splunk.com

Puppet | State of DevOps Report 2018

79

http://puppet.com
http://www.splunk.com
puppet.com
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

About AWS
For over 12 years, Amazon Web Services has been the world's most comprehensive
and broadly adopted cloud platform. AWS offers over 125 fully featured services for
compute, storage, databases, networking, analytics, machine learning and artificial
intelligence (AI), Internet of Things (IoT), mobile, security, hybrid, virtual and
augmented reality (VR and AR), media, and application development, deployment,
and management from 55 Availability Zones (AZs) within 18 geographic regions
and one Local Region around the world, spanning the U.S., Australia, Brazil, Canada,
China, France, Germany, India, Ireland, Japan, Korea, Singapore, and the UK. AWS
services are trusted by millions of active customers around the world—including
the fastest-growing startups, largest enterprises, and leading government
agencies—to power their infrastructure, make them more agile, and lower costs.
To learn more about AWS, visit aws.amazon.com.

About Cloudability
Cloudability is a multi-cloud, True Cost™ management platform that delivers
accurate cloud financials, empowering companies to run their cloud with
financial and operational excellence. Our True Cost™ platform is designed
to enable visibility, optimization and governance for every VM, container
and serverless workload, application, department and user. Cloudability
helps thousands of global enterprises and cloud-native companies leverage
data science, analytics, machine learning and automation to improve
margins, reduce cloud spend waste, and get solutions to market faster.
Headquartered in Portland, Oregon, Cloudability is a venture-backed
company with offices around the world. Learn more at cloudability.com.

Report Sponsors

Puppet | State of DevOps Report 2018

80

http://aws.com
http://cloudability.com
https://aws.amazon.com
https://www.cloudability.com
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

About Cognizant
Cognizant is one of the world's leading professional services companies,
transforming clients' business, operating and technology models for
the digital era. Our unique industry-based, consultative approach helps
clients envision, build and run more innovative and efficient businesses.
Headquartered in the U.S., Cognizant is ranked 195 on the Fortune 500
and is consistently listed among the most admired companies in the world.
Learn how Cognizant helps clients lead with digital at cognizant.com
or follow us @Cognizant.

About CyberARK
CyberArk (NASDAQ: CYBR) is the global leader in privileged access security,
a critical layer of IT security to protect data, infrastructure and assets across the
enterprise, in the cloud and throughout the DevOps pipeline. CyberArk delivers the
industry’s most complete solution to reduce risk created by privileged credentials
and secrets. The company is trusted by the world’s leading organizations,
including more than 50 percent of the Fortune 100, to protect against external
attackers and malicious insiders. A global company, CyberArk is headquartered
in Petach Tikva, Israel, with U.S. headquarters located in Newton, Mass. The
company also has offices throughout the Americas, EMEA, Asia Pacific and Japan.
To learn more about CyberArk, follow @CyberArk or visit cyberark.com.

Report Sponsors

Puppet | State of DevOps Report 2018

81

http://cognizant.com
https://www.cyberark.com/
http://www.cognizant.com
http://twitter.com/cognizant
https://twitter.com/CyberArk?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
http://www.cyberark.com
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report
https://www.cyberark.com/

About Diaxion
In a market grappling with demanding and complex transformation, Diaxion
helps business leaders achieve high performing outcomes, with reduced risk.
Leveraging our unique insight, Diaxion leads with the business challenge to
unlock IT requirements that deliver the right outcome through people process
and technology. We do this because we believe business goals should drive IT,
not be limited by it. With over 18 years experience designing and implementing
transformation projects, Diaxion is the choice of corporate Australian firms.
Our highly skilled staff guarantee right fit IT to deliver high performing business
outcomes, while our methodology, proven in over 2000 projects, ensures a
robust and de-risked process. Diaxion, business powered IT. diaxion.com

About Eficode
Eficode is building the future of software development. We help our customers
become high performance software organizations by providing DevOps
platform and consultancy services. Eficode Root DevOps platform is a
complete, state-of-the-art software production line tailored to perfectly fit your
organization’s needs. It comes as a turn-key solution with flexible options for
support, maintenance, hosting and continuous production line development.
Eficode is a privately held, fast growing international company with more
than 240 employees. The company is headquartered in Helsinki with multiple
branch offices outside of Finland. Learn more at eficoderoot.com

Report Sponsors

Puppet | State of DevOps Report 2018

82

http://eficoderoot.com
http://diaxion.com
https://www.diaxion.com
https://eficoderoot.com
http://puppet.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fpuppet.com%2Fresources%2Fwhitepaper%2Fstate-of-devops-report
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fpuppet.com%2Fstate-of-devops-report
https://twitter.com/home?status=I%E2%80%99m%20reading%20the%202018%20%23StateofDevOps%20Report.%20Get%20it%20from%20%40Puppetize%20and%20%40Splunk%20here%3A%20https%3A//puppet.com/state-of-devops-report

+

Presented by:

	Executive summary
	Key findings
	Who took the survey
	The five stages of DevOps evolution: An introduction
	CAMS and the DevOps evolutionary model
	Stage 0: Build the foundation
	Stage 1: Normalize the technology stack
	Stage 2: Standardize and reduce variability
	Stage 3: Expand DevOps practices
	Stage 4: Automate infrastructure delivery
	Stage 5: Provide self-service capabilities
	Conclusion
	Methodology
	Author biographies

